4.1 Article

Paleoenvironment and chemostratigraphy heterogenity of the Cretaceous organic-rich shales

Journal

ADVANCES IN GEO-ENERGY RESEARCH
Volume 5, Issue 4, Pages 444-455

Publisher

Yandy Scientific Press
DOI: 10.46690/ager.2021.04.09

Keywords

Shale oil; sweet-spot; nano-pore; Paleoenvironment reconstruction

Funding

  1. Natural Science Foundation of China [42072187, 42090025]
  2. CNPC Key Project of Science and Technology [2019E-26, 2021DQ0405]

Ask authors/readers for more resources

The research indicates that the Qingshankou Formation was deposited in a fresh water-brackish water, semideep/deep water, and strongly reducing environment. Paleosalinity was positively correlated with total organic carbon, residual hydrocarbon, and carbonate mineral content, with pores predominantly consisting of intra-illite pores, intraI/S mixed-layer pores, and intra-pyrite pores.
The Cretaceous Qingshankou Formation in the Songliao Basin is rich in shale oil resources, which has become one of the most important exploration targets of lacustrine shale oil in China. Based on X-ray fluorescence element analysis, X-ray diffraction analysis, total organic carbon, rock pyrolysis, scanning electron microscope and nitrogen adsorption, the Paleoenvironment was reconstructed by comprehensive utilization of integrated prediction error filter analysis of chemical stratigraphy, and its relationship with organic geochemistry, mineralogy and pore structure was discussed. The results indicated that the Qingshankou Formation was deposited in the environment with fresh water-brackish water, semideep/deep water and strong reduction. The evolution of Paleoenvironment during the deposition of Qingshankou Formation changed from bottom to top, with increasing water depth, decreasing salinity and oxygen content. Paleosalinity was positively correlated with total organic carbon, residual hydrocarbon and carbonate mineral content. From bottom to top, the contents of carbonate and chlorite decreased, while the contents of plagioclase and clay minerals increased slightly. The pores were dominated by intra-illite pores, intraI/S mixed-layer pores and intra-pyrite pores. Some intra-plagioclase pores and calcite dissolution pores were developed, and the organic matter pores are slightly few. Nitrogen adsorption data showed that the dominate pore size was 40-53 nm. This study clarifies the Paleoenvironmental evolution of the Qingshankou Formation, and may shed lights on lacustrine shale oil accumulation and sweet-spotting.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available