4.1 Article

Magnetohydrodynamic (MHD) mixed convection stagnation point flow of a nanofluid over a vertical plate with viscous dissipation

Journal

CANADIAN JOURNAL OF PHYSICS
Volume 93, Issue 11, Pages 1365-1374

Publisher

CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS
DOI: 10.1139/cjp-2014-0689

Keywords

-

Ask authors/readers for more resources

In this study, magnetohydrodynamic effects on the mixed convection flow of nanofluid particles, namely, Cu (copper) and Al2O3 (alumina) near a stagnation region over a vertical plate in the presence of viscous dissipation is investigated. The governing equations of the nanofluid flow model proposed by Tiwari and Das (Int. J. Heat Mass Transfer, 50, 2002 (2007). doi:10.1016/j.ijheatmasstransfer.2006.09.034) are converted into a dimensionless nonlinear system of ordinary differential equations by using the similarity transformation. The solution of the resulting equations is obtained numerically by using a very efficient implicit scheme known as the Keller box method. A comparison with previous studies is shown in tabular form and excellent agreement is found. The effects of pertinent parameters like magnetic parameter M, Eckert number Ec, and volume fraction parameter phi on velocity, temperature, skin friction coefficient, and local Nusselt number with fixed value of Prandtl number Pr = 6.2 are shown graphically and discussed. These results show that the skin friction coefficient increases for both nanoparticles in assisting and opposing flow cases because of increasing absolute values of M and Ec, on the other hand heat transfer rate is enhanced in the opposing flow case and reduced in the assisting flow case. The values of skin friction coefficient for both nanoparticles, namely, Cu and Al2O3 increase with the increase in volume fraction parameter phi in both assisting and opposing flow cases and Cu has a higher value than Al2O3. The same behavior is observed for local Nusselt number in opposing flow, but in assisting flow the value of local Nusselt number decreases with the increase of phi in the presence of magnetic and viscous dissipation effects and Cu has a smaller value than Al2O3.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available