4.7 Article

Energetics of point defect interacting with grain boundaries undergone plastic deformations

Journal

INTERNATIONAL JOURNAL OF PLASTICITY
Volume 85, Issue -, Pages 93-109

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijplas.2016.07.004

Keywords

Dislocations; Grain boundaries; Microstructures; Metallic material; Polycrystalline material

Funding

  1. NSFC [11502191, 11372238, 11321062, 11302161]
  2. China Postdoctoral Science Foundation [2015M580836]
  3. fundamental Research Funds for the central Universities
  4. Chang Jiang Scholar Program

Ask authors/readers for more resources

Grain boundaries (GBs) in the polycrystalline and nanocrystalline materials are usually at their non-equilibrated states due to the plastic deformations. Thus, the point defect sink efficiencies of non-equilibrated GBs may be different from those of equilibrated counterparts, which may influence the irradiation tolerance of materials. In this paper, we firstly performed the shear responses of four copper symmetric tilt grain boundaries (GBs). The plastic deformation modes of four GBs include GB sliding, shear-coupling and complex mechanism due to atom-shuffling, partial dislocation nucleation and local GB dissociations. We then study the energetics of point defects interacting with a series of GB configurations undergone plastic deformations. It is found that the plastic deformation dominated by the sliding and shear-coupling has no effect on the point defect sink efficiency of GB in comparison with initial GB states. However, sink efficiencies of GB configurations produced from the complex deformation mode are generally intensified, for both vacancy and self-interstitial atom. In addition, the residual stress in the crystals due to the dislocation nucleating from GB affects the point defect concentration in the crystals: On the other hand, complex deformation mechanism drives GBs to higher energy states with highly disordered structures. As a result, the distribution of lower point defect formation energies extends a larger distance from GB, which may therefore favor GB absorbing the point defects nearby. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available