4.5 Article

Characterization of bacterial communities associated with Brassica napus L. growing on a Zn-contaminated soil and their effects on root growth

Journal

INTERNATIONAL JOURNAL OF PHYTOREMEDIATION
Volume 18, Issue 10, Pages 985-993

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/15226514.2016.1183566

Keywords

Endophytes; inoculation; phytoremediation; plant-associated bacteria; plant growth-promoting bacteria

Funding

  1. INIA (FPI-INIA)
  2. EIADES PROGRAM [S2009/AMB-1478]
  3. UHasselt Methusalem project [08M03VGRJ]
  4. FWO (Fund for Scientific Research Flanders)
  5. [RTA000150-00-00-INIA]

Ask authors/readers for more resources

The interaction between plant growth-promoting bacteria (PGPB) and plants can enhance biomass production and metal tolerance of the host plants. This work aimed at isolating and characterizing the cultivable bacterial community associated with Brassica napus growing on a Zn-contaminated site, for selecting cultivable PGPB that might enhance biomass production and metal tolerance of energy crops. The effects of some of these bacterial strains on root growth of B. napus exposed to increasing Zn and Cd concentrations were assessed. A total of 426 morphologically different bacterial strains were isolated from the soil, the rhizosphere, and the roots and stems of B. napus. The diversity of the isolated bacterial populations was similar in rhizosphere and roots, but lower in soil and stem compartments. Burkoholderia, Alcaligenes, Agrococcus, Polaromonas, Stenotrophomonas, Serratia, Microbacterium, and Caulobacter were found as root endophytes exclusively. The inoculation of seeds with Pseudomonas sp. strains 228 and 256, and Serratia sp. strain 246 facilitated the root development of B. napus at 1,000 mu M Zn. Arthrobacter sp. strain 222, Serratia sp. strain 246, and Pseudomonas sp. 228 and 262 increased the root length at 300 mu M Cd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available