4.7 Article

Exploring the effect of hydrophilic and hydrophobic structure of grafted polymeric micelles on drug loading

Journal

INTERNATIONAL JOURNAL OF PHARMACEUTICS
Volume 512, Issue 1, Pages 282-291

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ijpharm.2016.08.054

Keywords

Drug-polymer compatibility; Hansen solubility parameter; Grafted polymeric micelles; Flory-Huggins interaction parameter

Funding

  1. Natural Science Foundation of China [81273446]
  2. Specialized Research Fund for the Doctoral Program of Higher Education [20122134110005]

Ask authors/readers for more resources

The objective of this paper is to explore the effect of hydrophilic and hydrophobic structure of grafted polymeric micelles on drug loading, and elucidate whether drug-polymer compatibility, as predicted by Hansen solubility parameters (HSPs), can be used as a tool for drug-polymer pairs screening and guide the design of grafted polymeric micelles. HSPs of 27 drugs and three grafted copolymers were calculated according to group contribution method. The drug-polymer compatibilities were evaluated using the approaches of Flory-Huggins interaction parameters (chi FH) and polarity difference (Delta X-p). Two models, model A and B, were put forward for drug-polymer compatibility prediction. In model A, hydrophilic/hydrophobic part as a whole was regarded as one segment. And, in model B, hydrophilic and hydrophobic segments were evaluated individually. First of all, using chitosan (CS)-grafted-glyceryl monooeate (GMO) based micelle as an example, the suitability of model A and model B for predicating drug-polymer compatibility was evaluated theoretically. Thereafter, corresponding experiments were carried out to check the validity of the theoretical prediction. It was demonstrated that Model B, which evaluates drug compatibility with both hydrophilic and hydrophobic segments of the copolymer, is more reliable for drug-polymer compatibility prediction. Moreover, the approach of model B allows for the selection of a defined grafted polymer with for a specific drug and vice versa. Thus, drug compatibility evaluation via HSPs with both hydrophilic and hydrophobic segments is a suitable tool for the rational design of grafted polymeric micelles. The molecular dynamics (MD) simulation study provided further support to the established model and experimental results. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available