4.7 Article

Development and evaluation of viscosity-enhanced nanocarrier (VEN) for oral insulin delivery

Journal

INTERNATIONAL JOURNAL OF PHARMACEUTICS
Volume 511, Issue 1, Pages 462-472

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ijpharm.2016.07.016

Keywords

Peptide; Insulin; Oral delivery; Solid lipid nanoparticles; Encapsulation efficiency; Propylene glycol

Funding

  1. Egyptian Ministry of Higher Education (Cultural affairs and Mission sector)

Ask authors/readers for more resources

Solid lipid nanoparticles (SLN) have demonstrated good potential for oral peptide delivery. However, their hydrophobic nature generally accounts for low peptide entrapment efficiency (EE%). In this study, a new strategy was adopted to improve peptide EE% by incorporating a hydrophilic viscosity-enhancing agent (VA) within SLN cores to develop viscosity enhanced nanocarriers (VEN). Three agents namely, propylene glycol (PG), polyethylene glycol (PEG) 400 and PEG 600, were tested with human insulin serving as a model peptide drug. The effects of VA were both concentration-and type-dependent. 70% w/w PG had achieved the highest EE% (54.5%), versus the two PEGs, compared to only 20.4% in unmodified SLN. PG based VEN had demonstrated good dispersion stability at gastrointestinal (GI) pHs and preferential uptake by intestinal Caco2 cells while showing low cytotoxicity. Additionally, they preserved the integrity of insulin and significantly protected it against GI enzymatic degradation. Freeze dried VEN had shown good stability upon storage at -20 degrees C. Orally administered insulin-VEN had achieved good hypoglycemic effect in fasted rats with relative bioavailability of 5.1%. To conclude, an easily implementable technique to improve peptide entrapment within SLN has been validated, and the resulting VEN had proved promising efficacy for oral peptide delivery. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available