4.6 Article

Feasibility of imaging of epidermal growth factor receptor expression with ZEGFR:2377 affibody molecule labeled with 99mTc using a peptide-based cysteine-containing chelator

Journal

INTERNATIONAL JOURNAL OF ONCOLOGY
Volume 49, Issue 6, Pages 2285-2293

Publisher

SPANDIDOS PUBL LTD
DOI: 10.3892/ijo.2016.3721

Keywords

epidermal growth factor receptor; radionuclide molecular imaging; affibody molecules; technetium-99m; A431; biodistribution

Categories

Funding

  1. Swedish Research Council (Vetenskapsradet)
  2. Swedish Cancer Society (Cancerfonden)

Ask authors/readers for more resources

The epidermal growth factor receptor (EGFR) is overexpressed in a number of malignant tumors and is a molecular target for several specific anticancer antibodies and tyrosine kinase inhibitors. The overexpression of EGFR is a predictive biomarker for response to several therapy regimens. Radionuclide molecular imaging might enable detection of EGFR overexpression by a non-invasive procedure and could be used repeatedly. Affibody molecules are engineered scaffold proteins, which could be selected to have a high affinity and selectivity to predetermined targets. The anti-EGFR ZEGFR:2377 affibody molecule is a potential imaging probe for EGFR detection. The use of the generator-produced radionuclide Tc-99m should facilitate clinical translation of an imaging probe due to its low price, availability and favorable dosimetry of the radionuclide. In the present study, we evaluated feasibility of ZEGFR:2377 labeling with Tc-99m using a peptide-based cysteine-containing chelator expressed at the C-terminus of ZEGFR:2377. The label was stable in vitro under cysteine challenge. In addition, Tc-99m-ZEGFR:2377 was capable of specific binding to EGFR-expressing cells with high affinity (274 pM). Studies in BALB/C nu/nu mice bearing A431 xenografts demonstrated that Tc-99m-ZEGFR:2377 accumulates in tumors in an EGFR-specific manner. The tumor uptake values were 3.6 1 and 2.5 0.4% ID/g at 3 and 24 h after injection, respectively. The corresponding tumor-to-blood ratios were 1.8 0.4 and 8 3. The xenografts were clearly visualized at both time-points. This study demonstrated the potential of Tc-99m-labeled ZEGFR:2377 for imaging of EGFR in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available