4.7 Article

Nonlinear Connectivity in the Human Stretch Reflex Assessed by Cross-Frequency Phase Coupling

Journal

INTERNATIONAL JOURNAL OF NEURAL SYSTEMS
Volume 26, Issue 8, Pages -

Publisher

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S012906571650043X

Keywords

Stretch reflex; sensorimotor system; nonlinear connectivity; time delay; EEG; EMG

Funding

  1. European Research Council under the European Union's Seventh Framework Programme (FP)/ERC Grant [291339]

Ask authors/readers for more resources

Communication between neuronal populations is facilitated by synchronization of their oscillatory activity. Although nonlinearity has been observed in the sensorimotor system, its nonlinear connectivity has not been widely investigated yet. This study investigates nonlinear connectivity during the human stretch reflex based on neuronal synchronization. Healthy participants generated isotonic wrist flexion while receiving a periodic mechanical perturbation to the wrist. Using a novel cross-frequency phase coupling metric, we estimate directional nonlinear connectivity, including time delay, from the perturbation to brain and to muscle, as well as from brain to muscle. Nonlinear phase coupling is significantly stronger from the perturbation to the muscle than to the brain, with a shorter time delay. The time delay from the perturbation to the muscle is 33 ms, similar to the reported latency of the spinal stretch reflex at the wrist. Source localization of nonlinear phase coupling from the brain to the muscle suggests activity originating from the motor cortex, although its effect on the stretch reflex is weak. As such nonlinear phase coupling between the perturbation and muscle activity is dominated by the spinal reflex loop. This study provides new evidence of nonlinear neuronal synchronization in the stretch reflex at the wrist joint with respect to spinal and transcortical loops.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available