4.6 Article

Polydatin inhibits the oxidative stress-induced proliferation of vascular smooth muscle cells by activating the eNOS/SIRT1 pathway

Journal

INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE
Volume 37, Issue 6, Pages 1652-1660

Publisher

SPANDIDOS PUBL LTD
DOI: 10.3892/ijmm.2016.2554

Keywords

polydatin; vascular smooth muscle cell; proliferation; atherosclerosis; oxidative stress; signaling pathway

Funding

  1. Science and Technology Item of Guangdong Province [2010B031500013]
  2. National Basic Research Program of China [2007CB507404]

Ask authors/readers for more resources

Oxidative stress-mediated proliferation of vascular smooth muscle cells (VSMCs) contributes to plaque formation and the progression of atherosclerosis. Polydatin is a derivative of resveratrol, and is widely present in certain herbal medications used for the treatment of cardiovascular diseases. In the present study, we examined whether polydatin was capable of attenuating VSMC proliferation induced by oxidative stress as well as the potential involvement of the endothelial nitric oxide synthetase (eNOS)/SIRT1 pathway. Briefly, VSMCs were exposed to H2O2 for 24 h in the absence or presence of polydatin (10-100 mu M) prior to performing a cell proliferation assay. In mechanistic studies, the cells were incubated with the silent information regulator 1 (SIRT1) inhibitor, EX527, or the eNOS inhibitor, L-NAME, prior to polydatin treatment. The results showed that polydatin inhibited VSMC proliferation and the level of reactive oxygen species, increased the expression of Kip1/p27, SIRT1 and eNOS, whereas the expression of cyclin B1, Cdk1 and c-myc was decreased. The number of cells in the G2/M phase was increased. Pre-treatment with L-NAME attenuated the inhibitory effects of polydatin on cell proliferation, inhibited the expression of SIRT1 and the phosphorylation of eNOS. Pre-treatment with EX527 also attenuated the inhibitory effects of polydatin on cell proliferation, but failed to reduce the activation of eNOS and the production of nitric oxide. Taken together, these findings suggest that, polydatin inhibited the oxidative stress-induced proliferation of VMSCs by activating the eNOS/SIRT1 pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available