4.7 Article

Controlling Droplet Impact Velocity and Droplet Volume: Key Factors to Achieving High Cell Viability in Sub-Nanoliter Droplet-based Bioprinting

Journal

INTERNATIONAL JOURNAL OF BIOPRINTING
Volume 8, Issue 1, Pages -

Publisher

WHIOCE PUBLISHING PTE LTD, SINGAPORE
DOI: 10.18063/ijb.v8i1.424

Keywords

3D Bioprinting; 3D Printing; Biofabrication; Drop-on-demand printing; Sub-nanoliter cell printing

Funding

  1. RIE2020 Industry Alignment Fund - Industry Collaboration Projects (IAFICP) Funding Initiative

Ask authors/readers for more resources

A study utilizing a thermal inkjet system to dispense sub-nanoliter cell-laden droplets identified droplet impact velocity and droplet volume as significant factors affecting the viability and proliferation of printed cells. Increasing cell concentration leads to slower impact velocity, improving cell viability, while a minimum droplet volume of 20 nL helps mitigate evaporation-induced cell damage. Control of droplet impact velocity and volume is crucial for viability and proliferation of printed human primary cells in sub-nanoliter bioprinting.
Three-dimensional (3D) bioprinting systems serve as advanced manufacturing platform for the precise deposition of cells and biomaterials at pre-defined positions. Among the various bioprinting techniques, the drop-on-demand jetting approach facilitates deposition of pico/nanoliter droplets of cells and materials for study of cell-cell and cell-matrix interactions. Despite advances in the bioprinting systems, there is a poor understanding of how the viability of primary human cells within sub-nanoliter droplets is affected during the printing process. In this work, a thermal inkjet system is utilized to dispense sub-nanoliter cell-laden droplets, and two key factors - droplet impact velocity and droplet volume - are identified to have significant effect on the viability and proliferation of printed cells. An increase in the cell concentration results in slower impact velocity, which leads to higher viability of the printed cells and improves the printing outcome by mitigating droplet splashing. Furthermore, a minimum droplet volume of 20 nL per spot helps to mitigate evaporation-induced cell damage and maintain high viability of the printed cells within a printing duration of 2 min. Hence, controlling the droplet impact velocity and droplet volume in sub-nanoliter bioprinting is critical for viability and proliferation of printed human primary cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available