4.8 Article

Recent advances in application of the graphene-based membrane for water purification

Journal

MATERIALS TODAY CHEMISTRY
Volume 22, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.mtchem.2021.100597

Keywords

Nanofiltration; Synthesis strategies; Absorption; Ion rejection; Photocatalysis; Desalination

Ask authors/readers for more resources

Graphene and its derivatives have significant potential for applications in water purification, especially in the development of nanoporous ultrathin filtration membranes for molecular separation and water purification. These graphene-based membranes offer various novel mass-transport phenomena and present challenges, shortcomings, along with future prospects for optimization and development.
Graphene is an atomic layer thick carbon-based material with unique two-dimensional architecture and extraordinary physiochemical, optical, electrical, and mechanical properties. Graphene and its derivatives show significant promises for the development of nanoporous ultrathin filtration membranes capable of molecular separation properties. Graphene-based nanofiltration membranes featuring distinct laminar structures can offer various novel mass-transport phenomena for purifying water, energy storage and separation, gas separation, and proton conductors. The latest developments in water purification techniques through graphene-based membranes including engineering, design, and fabrication of diverse graphene, graphene-oxide, and graphene-composite membranes are provided here in relation to their application paradigm for purifying water. The critical views on pollutant removal mechanisms for water purification along with optimization measures are specially highlighted. In addition, the challenges, shortcomings, and future prospects are pointed out. The green and large-scale synthesis technology of graphene coupling with advanced membrane fabrication techniques can promote these state-of-the-art nanofiltration membranes for a wide range of applications. (c) 2021 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available