4.7 Article

Graphitic Carbon Nitride Nanoflakes Decorated on Multielement-Doped Carbon as Photocatalysts for Bacterial Disinfection under Visible and Near-Infrared Light

Journal

ACS APPLIED NANO MATERIALS
Volume 5, Issue 3, Pages 3422-3433

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsanm.1c03980

Keywords

graphitic carbon nitride; g-C3N4; photocatalyst; photocatalytic disinfection; bacteria

Funding

  1. JSPS KAKENHI [20H05214]
  2. JST CREST [JPMJCR20H3]
  3. Grants-in-Aid for Scientific Research [20H05214] Funding Source: KAKEN

Ask authors/readers for more resources

In this study, a photocatalyst with a broad active spectrum was prepared and successfully applied for bacterial disinfection. The photocatalyst exhibited unique physical and chemical properties, as well as a broad light absorption spectrum. Compared to traditional photocatalysts, the photocatalyst showed higher catalytic activity under visible light and near-infrared exposure.
Preparing photocatalyst-based graphitic carbon nitrides that have a broad active spectrum for energy and environmental applications remains a huge challenge. Sub-10-nm graphitic carbon nitride has become an attractive photocatalyst because of its impressive optical and electronic properties, strong quantum confinement, and an edge effect that converts near-infrared (NIR) into visible (vis). Herein, a photocatalyst with a broad active spectrum from vis (400-800 nm) to NIR (800-2500 nm) was prepared through the self-assembly of graphene-like graphitic carbon nitride nanoflakes decorated on multielement-doped carbon (g-C3N4NFC) for bacterial disinfection. The as-prepared g-C3N4NFC exhibited unique physical and chemical properties and a broad light absorption spectrum from the vis to NIR region. The g-C3N4NFC promoted high photocatalytic disinfection toward Escherichia coli and Staphylococcus aureus under vis and NIR exposure, while the conventional graphitic carbon nitride photocatalyst showed low catalytic activity and was not active under NIR radiation. The authors attribute this effect to the wide spectrum harvesting and inhibition of charge recombination caused by the ultrasmall size of g-C3N4NF and the introduction of multielement-doped carbon, respectively. The bactericidal mechanism occurred via the destruction of the cell membrane, which was confirmed by the leakage of intercellular cell components after direct contact with holes generated from photocatalytic activity on the catalyst surface in the presence of oxygen. The photocatalytic activity was essentially unchanged when the catalyst was reused five times, highlighting its excellent stability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available