4.6 Article

Optimization Design for the Planetary Gear Train of an Electric Vehicle under Uncertainties

Journal

ACTUATORS
Volume 11, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/act11020049

Keywords

optimization design; vehicle structure design; uncertainty; deceleration device

Funding

  1. Nanchang Intelligent New Energy Vehicle Research Institute [20511104602, 17092380013]

Ask authors/readers for more resources

This study develops a multi-objective uncertainty optimization design framework for the planetary gear train of electric vehicles, considering the volume and transmission efficiency as optimization objectives and the manufacturing size, material, and load input as uncertainties. An improved non-dominated sorting genetic algorithm II and multi-criteria decision making method are used to obtain reliable optimization solutions and reduce failure risk.
The planetary gear train is often used as the main device for decelerating and increasing the torque of the drive motor of electric vehicles. Considering the lightweight requirement and existing uncertainty in structural design, a multi-objective uncertainty optimization design (MUOD) framework is developed for the planetary gear train of the electric vehicle in this study. The volume and transmission efficiency of the planetary gear train are taken into consideration as optimization objectives. The manufacturing size, material, and load input of the planetary gear train are considered as uncertainties. An approximate direct decoupling model, based on subinterval Taylor expansion, is applied to evaluate the propagation of uncertainties. To improve the convergence ability of the multi-objective evolutionary algorithm, the improved non-dominated sorting genetic algorithm II (NSGA-II) is designed by using chaotic and adaptive strategies. The improved NSGA-II has better convergence efficiency than classical NSGA-II and multi-objective particle swarm optimization (MOPSO). In addition, the multi-criteria decision making (MCDM) method is applied to choose the most satisfactory solution in Pareto sets from the multi-objective evolutionary algorithm. Compared with the multi-objective deterministic optimization design (MDOD), the proposed MUOD framework has better reliability than MDOD under different uncertainty cases. This MUOD method enables further guidance pertaining to the uncertainty optimization design of transportation equipment, containing gear reduction mechanisms, in order to reduce the failure risk.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available