4.5 Article

Efficacy of Photodynamic Inactivation against the Major Human Antibiotic-Resistant Uropathogens

Journal

PHOTONICS
Volume 8, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/photonics8110495

Keywords

urolithiasis; antibiotic-resistant bacteria; bactericidal effect; laser-induced inactivation; photosensitizer

Categories

Funding

  1. Russian Science Foundation [21-15-00371]
  2. Russian Science Foundation [21-15-00371] Funding Source: Russian Science Foundation

Ask authors/readers for more resources

PDI is considered an effective method for preventing postoperative complications of urolithiasis. This study demonstrates the application of PDI in dealing with drug-resistant bacterial strains associated with renal calculi and selecting optimal exposure modes for different bacteria. Antibiotic-resistant bacteria were predominant in urinary tract infection samples, and exposure modes with maximal bactericidal activity were chosen for certain bacterial strains.
Photodynamic inactivation (PDI) is considered to be an effective method of prevention of postoperative complications of urolithiasis. The present study shows a complex approach to assess the efficacy of PDI of drug resistant bacteria associated with renal calculi. Bacterial strains associated with renal calculi were isolated and identified using standard methods of bacteriological analysis and tested for drug resistance to 10 antibiotics by the disco-diffusion method. Uropathogenic bacterial strains present in 78.7 & PLUSMN; 5.2% of the infected samples from the total number of analyzed calculi. The most frequent representatives belonged to the genera Staphylococcus, Escherichia, and Enterococcus. All tested strains showed high antibiotic resistance. Representatives of the most common bacterial genera in the calculi were used as models for the selection of PD exposure modes. It was found that the maximum time of photosensitizer accumulation depends on the structure of the bacterial cell wall: 30 min for Gram-negative strains and 60 min for Gram-positive ones. Optimal modes of PD exposure to antibiotic-resistant uropathogenic microorganisms were selected: 50 mu g/mL Fotoditazin and 150 mW laser power. The maximal bactericidal activity of PDI against uropathogenic microorganisms was shown for Enterococcus faecalis, and Staphylococcus aureus. The bacteriostatic effect was found against Escherichia coli and Proteus mirabilis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available