4.5 Article

Design and Evaluation of Two-Stage Membrane-Separation Processes for Propylene-Propane Mixtures

Journal

MEMBRANES
Volume 12, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/membranes12020163

Keywords

membrane separation; process design; CO2 emissions; total annual cost; propylene

Ask authors/readers for more resources

A two-stage membrane-separation process was designed to extract propylene, aiming to reduce energy consumption and production costs. The advantages of the membrane-separation process were highlighted by evaluating the indicators of CO2 emissions and total annual costs. Case studies using model membranes were also conducted to forecast the technological applications of the membrane-separation process.
Propylene is industrially produced in a mixture with propane and generally separated from the mixture via distillation. However, because distillation is an energy-consuming process, a more efficient separation process should be developed to mitigate both carbon dioxide (CO2) emissions and production costs. In this study, a two-stage membrane-separation process was designed, and its CO2 emission and production costs were evaluated. The separation processes were designed to minimize energy consumption using different membrane combinations (two recently developed membranes each). To evaluate the separation processes using various membrane combinations, two indicators, i.e., CO2 emissions and total annual costs (TACs), were estimated based on the process simulation (Pro/II, version 10.1.1) results, including energy consumptions, operation expenditure, and capital expenditure. These results were compared to the distillation processes as benchmarks, and the advantages of the membrane-separation process were discussed. In the comparison, carbon taxes were implemented for assessing these two independent indicators as a single indicator, i.e., TAC with carbon tax. Furthermore, using the same scheme, model membranes were also employed in the two-stage membrane-separation process as case studies of technological forecasts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available