4.6 Article

Last Nucleotide Substitutions of COL4A5 Exons Cause Aberrant Splicing

Journal

KIDNEY INTERNATIONAL REPORTS
Volume 7, Issue 1, Pages 108-116

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ekir.2021.10.012

Keywords

COL4A5; genotype-phenotype correlation; last nucleotide position; missense variants; single-base substitutions; splicing

Funding

  1. Ministry of Education, Cul-ture, Sports, Science and Technology of Japan [16K19642, 26293203, 17H04189, 19K08726]
  2. Japan Agency for Med-ical Research and Development [JP19ek0109231h0003, 19ek0109231s0103]
  3. Japan Foundation for Pediatric Research [19-002]
  4. Grants-in-Aid for Scientific Research [16K19642, 26293203] Funding Source: KAKEN

Ask authors/readers for more resources

This study revealed that most single-base substitutions at the last nucleotide position of COL4A5 exons result in splicing variants rather than missense variants, leading to more severe phenotypes.
Introduction: COL4A5 is a causative gene of X-linked Alport syndrome (XLAS). Male patients with XLAS with nonsense variants have the most severe phenotypes of early onset end-stage kidney disease (ESKD); those with splicing variants have middle phenotypes and those with missense variants have the mildest phenotypes. Therefore, genotyping for male patients with XLAS can be used to predict kidney prognosis. Single-base substitutions at the last nucleotide position in each exon are known to affect splicing patterns and could be splicing variants. Nevertheless, in XLAS, these variants are generally considered to be missense variants, without conducting a transcript analysis, which underestimates some patients as having mild phenotypes. This study aimed to investigate whether single-base substitutions at the last nucleotide position of COL4A5 exons cause aberrant splicing. Methods: In total, 20 variants were found in the Human Gene Mutation Database (n = 14) and our cohort (n = 6). We performed functional splicing assays using a hybrid minigene analysis and in vivo transcript analyses of patients' samples when available. Then, we investigated genotype-phenotype correlations for patients with splicing variants detected in this study by comparing data from our previous studies. Results: Among the 20 variants, 17 (85%) caused aberrant splicing. Male patients with splicing variants had more severe phenotypes when compared with those with missense variants. Findings from the in vivo analyses for 3 variants were identical to those from the minigene assay. Conclusion: Our study revealed that most single-base substitutions at the last nucleotide position of COL4A5 exons result in splicing variants, rather than missense variants, thereby leading to more severe phenotypes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available