4.6 Article

Comparison of Myosepta Development and Transcriptome Profiling between Blunt Snout Bream with and Tilapia without Intermuscular Bones

Journal

BIOLOGY-BASEL
Volume 10, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/biology10121311

Keywords

intermuscular bone; development; Megalobrama amblycephala; Oreochromis niloticus; histological structure; transcriptome; gene expression

Categories

Ask authors/readers for more resources

The presence of intermuscular bones (IBs) in fish directly impacts their economic and edible value. This study explored the molecular mechanisms regulating IB formation using histological analysis, transcriptome profiling, and gene expression quantification. The research identified bone-related genes and their roles in IB development, providing insights into understanding the formation of IBs.
Simple Summary The presence or absence of intermuscular bones (IBs) is directly related to the economic and edible value of fish. The specific regulatory mechanism of IB formation is not completely known yet. Here, we explored the molecular mechanisms that regulate the formation of IBs based on histological analysis, transcriptome profiling, and gene expression quantification using M. amblycephala (with IBs) and O. niloticus (without IBs) as models. As a result, we identified several bone-related genes and elucidated their regulatory roles in the development of IBs. Intermuscular bones (IBs) are small spicule-like bones located in the myosepta of basal teleosts, which negatively affect the edibleness and economic value of fish. Blunt snout bream (Megalobrama amblycephala, with epineural and epipleural IBs) and tilapia (Oreochromis niloticus, without epineural and epipleural IBs) are two major aquaculture species and ideal models for studying the formation mechanisms of fish IBs. Here, we compared myosepta development between M. amblycephala and O. niloticus, based on histological analysis, transcriptome profiling, and expression analysis of bone-related genes. The histological results showed that dye condensation began to appear in the myosepta 20 days post hatching (dph) in M. amblycephala, and IBs could be clearly observed 50 dph in the myosepta, based on different staining methods. However, in O. niloticus, dye condensation was not observed in the myosepta from 10 to 60 dph. Differentially expressed genes (DEGs) at different developmental stages were screened by comparing the transcriptomes of M. amblycephala and O. niloticus, and KEGG analysis demonstrated that these DEGs were enriched in many bone-related pathways, such as focal adhesion, calcium, and Wnt signaling pathways. Quantitative PCR was performed to further compare the expression levels of some bone-related genes (scxa, scxb, runx2a, runx2b, bgp, sp7, col1a2, entpd5a, entpd5b, phex, alpl, and fgf23). All the tested genes (except for alpl) exhibited higher expression levels in M. amblycephala than in O. niloticus. A comparison of the dorsal and abdominal muscle tissues between the two species also revealed significant expression differences for most of the tested genes. The results suggest that scxa, scxb, runx2a, runx2b, entpd5a, col1a2, and bgp may play important roles in IB development. Our findings provide some insights into the molecular mechanisms of IB formation, as well as clues for further functional analysis of the identified genes to better understand the development of IBs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available