4.6 Article

Gastrointestinal Incretins-Glucose-Dependent Insulinotropic Polypeptide (GIP) and Glucagon-like Peptide-1 (GLP-1) beyond Pleiotropic Physiological Effects Are Involved in Pathophysiology of Atherosclerosis and Coronary Artery Disease-State of the Art

Journal

BIOLOGY-BASEL
Volume 11, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/biology11020288

Keywords

atherosclerosis; coronary artery disease; glucose-dependent insulinotropic polypeptide; glucagon-like peptide-1; dipeptidyl peptidase-4

Categories

Ask authors/readers for more resources

This manuscript provides a comprehensive summary of the role of gastrointestinal hormones GIP and GLP-1 in atherosclerosis and coronary artery disease. The study suggests that GIP and GLP-1 are expressed in various human tissues and are associated with inflammation, atherosclerosis, and myocardial ischemia. In animal models, GIP and GLP-1 improve endothelial function and reduce macrophage infiltration in atherosclerotic plaques. In humans, GIP and GLP-1 have both pro-atherosclerotic and anti-atherosclerotic effects. Clinical trials have shown that GLP-1 analogs can significantly reduce cardiovascular events in patients with type 2 diabetes. However, more research is needed to understand the metabolism of GIP in acute myocardial ischemia and stable coronary artery disease.
Simple Summary The presented manuscript contains the most current and extensive summary of the role of the most predominant gastrointestinal hormones-GIP and GLP-1 in the pathophysiology of atherosclerosis and coronary artery disease both in animals and humans. We have described GIP and GLP-1 as (1) expressed in many human tissues, (2) emphasized relationship between GIP and GLP-1 and inflammation, (3) highlighted importance of GIP and GLP-1-dependent pathways in atherosclerosis and coronary artery disease and (4) proved that GIP and GLP-1 could be used as markers of incidence, clinical course and recurrence of coronary artery disease, and related to extent and severity of atherosclerosis and myocardial ischemia. Our initial review may state a cornerstone for the future, however, there are still many unknowns and understatements on this topic. Due to the widespread growing interest for the potential use of incretins in cardiovascular diseases, we think that further research in this direction is desirable. For the future, we would like to recognize GIP and GLP-1 as widely implemented into clinical practice as new biomarkers of atherosclerosis and coronary artery disease. Coronary artery disease (CAD), which is the manifestation of atherosclerosis in coronary arteries, is the most common single cause of death and is responsible for disabilities of millions of people worldwide. Despite numerous dedicated clinical studies and an enormous effort to develop diagnostic and therapeutic methods, coronary atherosclerosis remains one of the most serious medical problems of the modern world. Hence, new markers are still being sought to identify and manage CAD optimally. Trying to face this problem, we have raised the question of the most predominant gastrointestinal hormones; glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), mainly involved in carbohydrates disorders, could be also used as new markers of incidence, clinical course, and recurrence of CAD and are related to extent and severity of atherosclerosis and myocardial ischemia. We describe GIP and GLP-1 as expressed in many animal and human tissues, known to be connected to inflammation and related to enormous noncardiac and cardiovascular (CV) diseases. In animals, GIP and GLP-1 improve endothelial function and lead to reduced atherosclerotic plaque macrophage infiltration and stabilize atherosclerotic lesions by directly blocking monocyte migration. Moreover, in humans, GIPR activation induces the pro-atherosclerotic factors ET-1 (endothelin-1) and OPN (osteopontin) but also has anti-atherosclerotic effects through secretion of NO (nitric oxide). Furthermore, four large clinical trials showed a significant reduction in composite of CV death, MI, and stroke in long-term follow-up using GLP-1 analogs for DM 2 patients: liraglutide in LEADER, semaglutide in SUSTAIN-6, dulaglutide in REWIND and albiglutide in HARMONY. However, very little is known about GIP metabolism in the acute phase of myocardial ischemia or for stable patients with CAD, which constitutes a direction for future research. This review aims to comprehensively discuss the impact of GIP and GLP-1 on atherosclerosis and CAD and its potential therapeutic implications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available