4.6 Article

Exercise Effects on the Biomechanical Properties of the Achilles Tendon-A Narrative Review

Journal

BIOLOGY-BASEL
Volume 11, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/biology11020172

Keywords

exercise; Achilles tendon; biomechanical properties; adaptation

Categories

Ask authors/readers for more resources

The Achilles tendon can be improved in terms of its mechanical properties through physical exercise, especially with long-term and low-intensity eccentric training.
Simple Summary The Achilles tendon influences the running economy because of its ability to store and release strain energy, and it remains one of the most vulnerable tendons among athletes and recreational runners. Exercised-related mechanical loading appears to induce changes in the Achilles tendon morphology and mechanical material properties. Both acute and relatively long-term exercise induces tendon adaptation, although biomechanical changes, e.g., cross-sectional area, plantarflexion moment, Young's modulus, and stiffness, in response to exercise duration, type, and loading-regimes differ widely. Furthermore, a strong Achilles tendon can be developed by chronic exposure to habitual mechanical loading from daily exercise, which is associated with greater energy storage, release and overall health. The morphological and mechanical properties (e.g., stiffness, stress, and force) of the Achilles tendon (AT) are generally associated with its tendinosis and ruptures, particularly amongst runners. Interest in potential approaches to reduce or prevent the risk of AT injuries has grown exponentially as tendon mechanics have been efficiently improving. The following review aims to discuss the effect of different types of exercise on the AT properties. In this review article, we review literature showing the possibility to influence the mechanical properties of the AT from the perspective of acute exercise and long-term training interventions, and we discuss the reasons for inconsistent results. Finally, we review the role of the habitual state in the AT properties. The findings of the included studies suggest that physical exercise could efficiently improve the AT mechanical properties. In particular, relatively long-term and low-intensity eccentric training may be a useful adjunct to enhance the mechanical loading of the AT.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available