4.6 Article

microRNA-124-3p attenuates myocardial injury in sepsis via modulating SP1/HDAC4/HIF-1α axis

Journal

CELL DEATH DISCOVERY
Volume 8, Issue 1, Pages -

Publisher

SPRINGERNATURE
DOI: 10.1038/s41420-021-00763-y

Keywords

-

Categories

Funding

  1. National Natural Science Foundation of China [81871609]

Ask authors/readers for more resources

This study investigates the role of microRNA (miR)-124-3p in sepsis-induced myocardial injury and identifies its mechanism of action through targeted regulation of SP1 to alleviate inflammation, oxidative stress, and apoptosis, thus improving myocardial injury in septic rats.
Sepsis-induced cardiac dysfunction can lead to death in sepsis. In this case, we targeted to explore in detail the relative mechanism of microRNA (miR)-124-3p in sepsis-induced myocardial injury via the specific protein 1/histone deacetylase 4/hypoxia-inducing factor 1 alpha (SP1/HDAC4/HIF-1 alpha) axis. Septic rats were modeled by cecal ligation puncture while in vitro septic cardiomyocyte H9C2 were induced by lipopolysaccharide (LPS). miR-124-3p/SP1/HDAC4/HIF-1 alpha expression levels in myocardial tissues of septic rats and LPS-treated H9C2 cells were measured. miR-124-3p overexpression and SP1 silencing assays were implemented on LPS-treated H9C2 cells to explore theirs actions in inflammation, oxidative stress and cell apoptosis. The interactions of miR-124-3p, SP1, and HDAC4 were testified. miR-124-3p was lowly expressed while SP1, HDAC4, and HIF-1 alpha were highly expressed in sepsis. Upregulation of miR-124-3p ameliorated inflammation, oxidative stress, and apoptosis of LPS-treated H9C2 cells. Silencing SP1 improved LPS-induced damage to cardiomyocytes. miR-124-3p targeted SP1 and HDAC4 interacted with SP1. SP1 overexpression antagonized miR-124-3p upregulation-induced improvements in LPS-induced cardiomyocyte damage. This study illustrates that miR-124-3p improves myocardial injury in septic rats through targeted regulation of SP1 to mediate HDAC4/HIF-1 alpha.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available