4.7 Article

Allelic variants of full-length VAR2CSA, the placental malaria vaccine candidate, differ in antigenicity and receptor binding affinity

Journal

COMMUNICATIONS BIOLOGY
Volume 4, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s42003-021-02787-7

Keywords

-

Funding

  1. Intramural Research Program of the National Institute of Allergy and Infectious Diseases, National Institutes of Health

Ask authors/readers for more resources

The study compares the antigenicity and receptor binding affinity of different allelic variants of the potential placental malaria vaccine candidate VAR2CSA in blood samples from pregnant women. The data suggest that inter-allelic differences may impact clinical presentation heterogeneity and have implications for vaccine design.
Full-length VAR2CSA is a potential placental malaria vaccine candidate and in this study, Renn et al. compare antigenicity and receptor binding affinity of different allelic variants in blood samples from pregnant women. Their data show that inter-allelic differences may contribute to the heterogeneity of clinical presentations, which could have implications for vaccine design. Plasmodium falciparum-infected erythrocytes (IE) sequester in the placenta via surface protein VAR2CSA, which binds chondroitin sulfate A (CSA) expressed on the syncytiotrophoblast surface, causing placental malaria (PM) and severe adverse outcomes in mothers and their offspring. VAR2CSA belongs to the PfEMP1 variant surface antigen family; PfEMP1 proteins mediate IE adhesion and facilitate parasite immunoevasion through antigenic variation. Here we produced deglycosylated (native-like) and glycosylated versions of seven recombinant full-length VAR2CSA ectodomains and compared them for antigenicity and adhesiveness. All VAR2CSA recombinants bound CSA with nanomolar affinity, and plasma from Malian pregnant women demonstrated antigen-specific reactivity that increased with gravidity and trimester. However, allelic and glycosylation variants differed in their affinity to CSA and their serum reactivities. Deglycosylated proteins (native-like) showed higher CSA affinity than glycosylated proteins for all variants except NF54. Further, the gravidity-related increase in serum VAR2CSA reactivity (correlates with acquisition of protective immunity) was absent with the deglycosylated form of atypical M200101 VAR2CSA with an extended C-terminal region. Our findings indicate significant inter-allelic differences in adhesion and seroreactivity that may contribute to the heterogeneity of clinical presentations, which could have implications for vaccine design.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available