4.7 Article

A gradient tree boosting and network propagation derived pan-cancer survival network of the tumor microenvironment

Journal

ISCIENCE
Volume 25, Issue 1, Pages -

Publisher

CELL PRESS
DOI: 10.1016/j.isci.2021.103617

Keywords

-

Ask authors/readers for more resources

Predicting cancer survival using XGBoost tree ensemble learning and network propagation is an effective approach to individualize therapy and identify biomarkers for monitoring cancer survival.
Predicting cancer survival from molecular data is an important aspect of biomedical research because it allows quantifying patient risks and thus individualizing therapy. We introduce XGBoost tree ensemble learning to predict survival from transcriptome data of 8,024 patients from 25 different cancer types and show highly competitive performance with state-of-the-art methods. To further improve plausibility of the machine learning approach we conducted two additional steps. In the first step, we applied pan-cancer training and showed that it substantially improves prognosis compared with cancer subtype-specific training. In the second step, we applied network propagation and inferred a pan-cancer survival network consisting of 103 genes. This network highlights cross-cohort features and is predictive for the tumor microenvironment and immune status of the patients. Our work demonstrates that pan-cancer learning combined with network propagation generalizes over multiple cancer types and identifies biologically plausible features that can serve as biomarkers for monitoring cancer survival.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available