4.7 Article

Relationship between Cognitive Dysfunction and Age-Related Variability in Oxidative Markers in Isolated Mitochondria of Alzheimer's Disease Transgenic Mouse Brains

Journal

BIOMEDICINES
Volume 10, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/biomedicines10020281

Keywords

Alzheimer's disease; reactive oxygen species; oxidative stress; cognitive impairment; mitochondria

Ask authors/readers for more resources

Many neurodegenerative disorders, including Alzheimer's disease (AD), are associated with oxidative damage accumulation. This study used transgenic mice as an AD model and found that cognitive impairment in AD mice occurs in an age-dependent manner. The hippocampus showed higher oxidative stress compared to other brain regions, potentially leading to mitochondrial dysfunction through oxidative damage.
Many neurodegenerative disorders, including Alzheimer's disease (AD), are strongly associated with the accumulation of oxidative damage. Transgenic animal models are commonly used to elucidate the pathogenic mechanism of AD. Beta amyloid (A beta) and tau hyperphosphorylation are very famous hallmarks of AD and well-studied, but the relationship between mitochondrial dysfunction and the onset and progression of AD requires further elucidation. In this study we used transgenic mice (the strain name is 5xFAD) at three different ages (3, 6, and 20 months old) as an AD model. Cognitive impairment in AD mice occurred in an age-dependent manner. A beta 1-40 expression significantly increased in an age-dependent manner in all brain regions with or without AD, and A beta 1-42 expression in the hippocampus increased at a young age. In a Western blot analysis using isolated mitochondria from three brain regions (cerebral cortex, cerebellum, and hippocampus), NMNAT-3 expression in the hippocampi of aged AD mice was significantly lower than that of young AD mice. SOD-2 expression in the hippocampi of AD mice was lower than for the age-matched controls. However, 3-NT expression in the hippocampi of AD mice was higher than for the age-matched controls. NQO-1 expression in the cerebral cortex of AD mice was higher than for the age-matched controls at every age that we examined. However, hippocampal NQO-1 expression in 6-month-old AD mice was significantly lower than in 3-month-old AD mice. These results indicate that oxidative stress in the hippocampi of AD mice is high compared to other brain regions and may induce mitochondrial dysfunction via oxidative damage. Protection of mitochondria from oxidative damage may be important to maintain cognitive function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available