4.7 Review

Layered g-C3N4/TiO2 nanocomposites for efficient photocatalytic water splitting and CO2 reduction: a review

Journal

MATERIALS TODAY ENERGY
Volume 23, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.mtener.2021.100904

Keywords

Graphitic carbon nitride/titanium oxide; nanocomposites; Photocatalysis and photocatalysts; Carbon dioxide reduction; H-2 generation

Funding

  1. Australian Research Council [DP180100731, DP180100568]

Ask authors/readers for more resources

This paper provides a comprehensive overview of the latest research progress in using g-C3N4/TiO2 nanocomposites for photocatalytic applications, discussing the challenges in improving solar-driven photocatalytic activities.
Solar-driven photocatalysts for water splitting and CO2 reduction have been widely studied for dealing with environmental pollution and energy sustainability issues. Among the most promising semiconductor photocatalysts, graphitic carbon nitride (g-C3N4) and TiO2 (anatase) with band gaps of similar to 2.7 and similar to 3.2 eV, respectively, are investigated extensively. However, the high photogenerated carrier recombination efficiency of g-C3N4 and the relatively wide band gap of TiO2 (responsive to ultraviolet light only) are the factors that can lower the photocatalytic activities of the materials. Thus, one of the prevalent strategies is to construct g-C3N4/TiO2 nanocomposites to promote charge carrier separation and to improve photoabsorption in the visible region for attaining efficient utilization of solar energy in photocatalytic water splitting, CO2 reduction, and organic pollutant photodegradation. Here, a comprehensive overview is made on the exploitation of g-C3N4/TiO2 nanocomposites for photocatalytic applications, emphasizing layered heterostructures, for solar-driven H-2 generation and CO2 reduction. Challenges in resolving various issues such as low efficiency, low stability, and noble metal cocatalyst dependency, as well as band gap narrowing accompanied reduction in redox ability of the g-C3N4/TiO2 nanocomposites, are discussed. (C) 2021 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available