4.8 Review

A review on current research status of the surface modification of Zn-based biodegradable metals

Journal

BIOACTIVE MATERIALS
Volume 7, Issue -, Pages 192-216

Publisher

KEAI PUBLISHING LTD
DOI: 10.1016/j.bioactmat.2021.05.018

Keywords

Zn-based biodegradable metals; Surface modification; Corrosion behavior; Biocompatibility; Osseointegration

Funding

  1. National Natural Science Foundation of China [51931001, 51901003]
  2. NSFC (China) [52011530392]
  3. CNR (Italy) [52011530392]
  4. Open Project of NMPA Key Laboratory for Dental Materials [PKUSS20200401]

Ask authors/readers for more resources

Zinc and its alloys have been proposed as candidate materials for biodegradable metals (BMs) due to their corrosion behavior and biocompatibility. However, surface treatment for Zn-based BMs is desired to better control their degradation behavior. This review summarizes the current surface modification methods of Zn-based alloys, the recent progress in biomedical Zn-based BMs and their surface modification strategies, and proposes future perspectives for designing bio-functionalized coatings on Zn-based BMs for orthopedic and cardiovascular applications.
Recently, zinc and its alloys have been proposed as promising candidates for biodegradable metals (BMs), owning to their preferable corrosion behavior and acceptable biocompatibility in cardiovascular, bone and gastrointestinal environments, together with Mg-based and Fe-based BMs. However, there is the desire for surface treatment for Zn-based BMs to better control their biodegradation behavior. Firstly, the implantation of some Zn-based BMs in cardiovascular environment exhibited intimal activation with mild inflammation. Secondly, for orthopedic applications, the biodegradation rates of Zn-based BMs are relatively slow, resulting in a long-term retention after fulfilling their mission. Meanwhile, excessive Zn2+ release during degradation will cause in vitro cytotoxicity and in vivo delayed osseointegration. In this review, we firstly summarized the current surface modification methods of Zn-based alloys for the industrial applications. Then we comprehensively summarized the recent progress of biomedical bulk Zn-based BMs as well as the corresponding surface modification strategies. Last but not least, the future perspectives towards the design of surface bio-functionalized coatings on Zn-based BMs for orthopedic and cardiovascular applications were also briefly proposed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available