4.8 Article

Stable all-solid-state lithium metal batteries with Li3N-LiF-enriched interface induced by lithium nitrate addition

Journal

ENERGY STORAGE MATERIALS
Volume 43, Issue -, Pages 229-237

Publisher

ELSEVIER
DOI: 10.1016/j.ensm.2021.09.002

Keywords

Solid electrolyte; Lithium nitrate; Lithium metal battery; Interface; Overpotential

Funding

  1. Taihu Electric Corporation [0001]

Ask authors/readers for more resources

This research introduces stable Li3N-LiF enriched interface in-situ induced by lithium nitrate (LiNO3) between poly (ethylene oxide) (PEO)-based solid electrolyte and Li anode, to improve the interface contact between solid electrolyte and Li anode, leading to homogeneous Li deposition. When paired with LiFePO4 cathode, the all-solid-state LMBs demonstrate superior cycling stability and Coulombic efficiency, showing promising prospects for potential applications.
All-solid-state lithium metal batteries (ASSLMBs) show great potential for high energy density as well as enhanced safety. However, the practical application is still hampered by uncontrollable dendrite growth and limited cycling stability. Herein, a stable Li3N-LiF-enriched interface is in-situ induced between poly (ethylene oxide) (PEO)-based solid electrolyte and Li anode by introducing lithium nitrate (LiNO3). Combining surface characterizations and molecular dynamics simulations, firstly, it reveals that the addition of LiNO3 facilitates the decomposition of lithium bis(trifluoromethylsulfonyl) imide (LiTFSI) to preferentially form LiF. The Li3N-LiF-enriched interface greatly improves interface contact between solid electrolyte and Li anode, leading to homogenous Li deposition. With LiNO3 addition, the critical current density of PEO-based electrolyte can be enhanced to high value of > 0.9 mA cm(-2) . Meanwhile, all-solid-state LMBs coupled with LiFePO4 cathode show superior cycling stability and Coulombic efficiency (CE), especially, the initial CE is up to 94.12 % at 0.5 C. Even paired with high-potential NCM cathode, promoted electrochemical performances can be achieved, with 91.4 % capacity retention after 200 cycles at 0.3 C. What's more, this work illustrates the importance of interface modification in ASSLMBs from the perspective of the relationship between impedances and overpotentials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available