4.7 Article

A Modified Coronavirus Herd Immunity Optimizer for the Power Scheduling Problem

Journal

MATHEMATICS
Volume 10, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/math10030315

Keywords

discrete coronavirus herd immunity optimizer; power scheduling problem in smart home; multi-criteria optimisation; smart home; multi-objective optimisation problem

Categories

Ask authors/readers for more resources

This paper modifies and adapts the Coronavirus Herd Immunity Optimizer (CHIO) algorithm to tackle the discrete power scheduling problem in smart homes (PSPSH). The proposed method models PSPSH as a multi-objective problem, incorporates problem-specific operators, and tunes CHIO parameters to achieve the best results.
The Coronavirus herd immunity optimizer (CHIO) is a new human-based optimization algorithm that imitates the herd immunity strategy to eliminate of the COVID-19 disease. In this paper, the coronavirus herd immunity optimizer (CHIO) is modified to tackle a discrete power scheduling problem in a smart home (PSPSH). PSPSH is a combinatorial optimization problem with NP-hard features. It is a highly constrained discrete scheduling problem concerned with assigning the operation time for smart home appliances based on a dynamic pricing scheme(s) and several other constraints. The primary objective when solving PSPSH is to maintain the stability of the power system by reducing the ratio between average and highest power demand (peak-to-average ratio (PAR)) and reducing electricity bill (EB) with considering the comfort level of users (UC). This paper modifies and adapts the CHIO algorithm to deal with such discrete optimization problems, particularly PSPSH. The adaptation and modification include embedding PSPSH problem-specific operators to CHIO operations to meet the discrete search space requirements. PSPSH is modeled as a multi-objective problem considering all objectives, including PAR, EB, and UC. The proposed method is examined using a dataset that contains 36 home appliances and seven consumption scenarios. The main CHIO parameters are tuned to find their best values. These best values are used to evaluate the proposed method by comparing its results with comparative five metaheuristic algorithms. The proposed method shows encouraging results and almost obtains the best results in all consumption scenarios.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available