4.7 Article

Delays in Plant Virus Models and Their Stability

Journal

MATHEMATICS
Volume 10, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/math10040603

Keywords

plant virus; mathematical model; stability

Categories

Ask authors/readers for more resources

This article introduces two models of plant virus transmission and incorporates delays. By analyzing and studying with numerical methods, it concludes that the first way of introducing delays is more justified.
Viruses infect humans and animals but also infect plants and cause great economic and ecological damage. In most cases, the virus is transmitted by a vector. After being bitten by an infected vector, the virus takes some time to replicate and spread in the plant. We present two models of the spread of viruses in plants based on ordinary differential equations, and then add either a delay or an exposed plant population. We study two ways of adding the delay. In the first one, a plant infected by a vector changes from susceptible to infective after a time equal to the delay. In the second one, immediately after the contact between a susceptible plant and infective vector, the plant is no longer susceptible, but it takes time equal to the delay for it to turn infective. To better explain the two ways of incorporating the delays, we first introduce them in a simple SIRS model. We analyze the models and study their stability numerically. We conclude by studying the interactions and the conservation of the total plant population that the first way of introducing the delay is better justified.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available