4.7 Article

CFD modelling of CaCO3 crystallization fouling on heat transfer surfaces

Journal

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
Volume 97, Issue -, Pages 618-630

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2015.11.099

Keywords

Crystallization; Fouling; CFD; Heat transfer; Calcium carbonate

Funding

  1. Acta Universitatis Ouluensis
  2. University of Oulu Graduate School
  3. Graduate School for Energy Science and Technology (EST)
  4. Doctoral Program in Energy Efficiency and Systems (EES)
  5. MATERA+ ERA-Net network
  6. Finnish Funding Agency for Technology and Innovations (Tekes)
  7. Jenny and Antti Wihuri Foundation
  8. Tauno Tonning Foundation
  9. Tekniikan Edistamissaatio

Ask authors/readers for more resources

Supersaturation of inversely soluble salts, like calcium carbonate, causes crystallization fouling on heated surfaces of heat exchangers. In this paper, crystallization fouling of calcium carbonate is studied by CFD modelling. Crystallization fouling is modelled in 2D and 3D flat plate geometries, which correspond to an experimental set-up of an idealised heat exchanger. The model is validated with experimental data under various operating conditions and is used to identify the regions where different parameters have the greatest effect on fouling. The CFD model presented in this paper is a novel combination of a fouling model, which includes the surface integration term and the shear stress dependent residence time, and the hydrodynamics and heat transfer modelled by CFD. The crystallization fouling CFD model predicts the experimental mass deposition rate and the linear fouling resistance within the experimental uncertainty in most of the studied conditions. The crystallization fouling CFD model is very sensitive to the heat exchanger surface temperature, but also relatively sensitive to the shear stress. The validated crystallization fouling model may be utilised to study fouling of industrial heat exchangers when the fouling is controlled by the surface integration. If mass transfer controls the crystallization fouling, the mass transport of ions should be included to the model. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available