4.7 Article

Effects of heater orientation on critical heat flux for nanoparticle-deposited surface with honeycomb porous plate attachment in saturated pool boiling of water

Journal

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
Volume 102, Issue -, Pages 1345-1355

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2016.07.004

Keywords

Critical heat flux; Heater orientation; Pool boiling; Porous plate; Nanoparticle deposition

Funding

  1. Grants-in-Aid for Scientific Research [15H03928] Funding Source: KAKEN

Ask authors/readers for more resources

One of the main concerns regarding in-vessel retention (IVR) during a severe accident is guaranteeing sufficient cooling performance to avoid the melt-through of the pressure vessel. In such an event, the vessel is submerged in water, and boiling is occurred to remove the heat. However, the main problem is that there is a limit to the pool boiling heat transfer at the outer surface of the reactor vessel due to occurrence of critical heat flux (CHF) conditions. Therefore, to enhance the capability of IVR in light-water reactors during states of emergency, methods of increasing the CHF should be considered. In our previous study, it was demonstrated that the pool boiling CHF can be increased approximately twofold by simply attaching a honeycomb porous plate to an upward-facing plain heated surface under saturated and atmospheric conditions. On the other hand, it is well known that the CHF for a heated surface is greatly enhanced by nanoparticle deposition because of the resulting improvement in surface wettability. In IVR, it is important to determine the CHF for downward-facing heated surfaces. Therefore, the objective of this paper is to examine the effect of the heater orientation on the CHF in combination with surface modification by honeycomb porous plate attachment and nanoparticle deposition. A pool boiling CHF experiment of water is performed under saturated temperature and atmospheric pressure conditions. Compared with a plain surface, the CHF is shown to be greatly increased by a combination of the honeycomb porous plate attachment and nanoparticle deposition, even under downward-facing heater conditions. Additionally, the CHF enhancement increases as the orientation of the heated surface approaches downward-facing. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available