4.7 Article

The Dune Engineering Demand Parameter and Applications to Forecasting Dune Impacts

Journal

Publisher

MDPI
DOI: 10.3390/jmse10020234

Keywords

erosion potential; dune erosion; New Jersey; fragility curves; probabilistic dune response; coastal hazards

Ask authors/readers for more resources

This article introduces a fragile curve model using a newly developed dune Engineering Demand Parameter (EDP), which can effectively assess the likelihood of dune erosion during storm events. By including storm intensity and resilience terms in the EDP, different beach configurations can be compared in different storm events.
Breaching or overtopping of coastal dunes is associated with greater upland damages. Reliable tools are needed to efficiently assess the likelihood of dune erosion during storm events. Existing methods rely on numerical modeling (extensive investment) or insufficiently parameterize the system. To fill this gap, a fragility curve model using a newly developed dune Engineering Demand Parameter (EDP) is introduced. Conceptually, the EDP is similar to the Shield's parameter in that it represents the ratio of mobilizing terms to stabilizing terms. Physically, the EDP is a measure of storm intensity over the dune's resilience. To highlight potential applications, the proposed EDP fragility curve models are fit to a spatially and temporally robust dataset and used to predict dune response subjected to varying storm intensities including both extratropical and tropical storm. This approach allows for the probabilistic prediction of dune impacts through an innovative, computationally efficient model. Several different forms of the EDP are tested to determine the best schematization of the dune resilience. The final recommended EDP is the Peak Erosion Intensity (PEI) raised to the fourth power over the product of the dune volume and berm-width squared. Including both storm intensity and resilience terms in the EDP enables comparison of different beach configurations in different storm events fulfilling a need existing vulnerability assessors cannot currently account for directly.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available