4.6 Article

Atomistic Simulations and In Silico Mutational Profiling of Protein Stability and Binding in the SARS-CoV-2 Spike Protein Complexes with Nanobodies: Molecular Determinants of Mutational Escape Mechanisms

Journal

ACS OMEGA
Volume 6, Issue 40, Pages 26354-26371

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.1c03558

Keywords

-

Funding

  1. Kay Family Foundation [A20-0032]

Ask authors/readers for more resources

This study combines atomistic simulations with ensemble-based mutational profiling to identify dynamic and binding affinity fingerprints of SARS-CoV-2 complexes with a variety of nanobodies. The research characterizes the binding energy hotspots in the SARS-CoV-2 protein and complexes with nanobodies, showing how nanobody combinations and biparatopic nanobodies can potentially increase binding affinity and resilience to escaping mutants.
Structure-functional studies have recently revealed a spectrum of diverse high-affinity nanobodies with efficient neutralizing capacity against SARS-CoV-2 virus and resilience against mutational escape. In this study, we combine atomistic simulations with the ensemble-based mutational profiling of binding for the SARS-CoV-2 S-RBD complexes with a wide range of nanobodies to identify dynamic and binding affinity fingerprints and characterize the energetic determinants of nanobody-escaping mutations. Using an in silico mutational profiling approach for probing the protein stability and binding, we examine dynamics and energetics of the SARS-CoV-2 complexes with single nanobodies Nb6 and Nb20, VHH E, a pair combination VHH E + U, a biparatopic nanobody VHH VE, and a combination of the CC12.3 antibody and VHH V/W nanobodies. This study characterizes the binding energy hotspots in the SARS-CoV-2 protein and complexes with nanobodies providing a quantitative analysis of the effects of circulating variants and escaping mutations on binding that is consistent with a broad range of biochemical experiments. The results suggest that mutational escape may be controlled through structurally adaptable binding hotspots in the receptor-accessible binding epitope that are dynamically coupled to the stability centers in the distant binding epitope targeted by VHH U/V/W nanobodies. This study offers a plausible mechanism in which through cooperative dynamic changes, nanobody combinations and biparatopic nanobodies can elicit the increased binding affinity response and yield resilience to common escape mutants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available