4.5 Article

Auditory Brainstem Response Wave I Amplitude Has Limited Clinical Utility in Diagnosing Tinnitus in Humans

Journal

BRAIN SCIENCES
Volume 12, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/brainsci12020142

Keywords

tinnitus; auditory brainstem response; biomarker; human

Categories

Ask authors/readers for more resources

Animal studies have shown that noise can cause cochlear damage and nerve degeneration. The present study aimed to determine whether ABR wave I amplitude or slope could be used to diagnose tinnitus in humans. The results showed that tinnitus subjects did not exhibit reduced ABR wave I amplitude or slope compared to control subjects, suggesting limited clinical utility of ABR in diagnosing tinnitus.
Animal studies have discovered that noise, even at levels that produce no permanent threshold shift, may cause cochlear damage and selective nerve degeneration. A hallmark of such damage, or synaptopathy, is recovered threshold but reduced suprathreshold amplitude for the auditory brainstem response (ABR) wave I. The objective of the present study is to evaluate whether the ABR wave I amplitude or slope can be used to diagnose tinnitus in humans. A total of 43 human subjects, consisting of 21 with tinnitus and 22 without tinnitus, participated in the study. The subjects were on average 44 +/- 24 (standard deviation) years old and 16 were female; a subgroup of 19 were young adults with normal audiograms from 125 to 8000 Hz. The ABR was measured using ear canal recording tiptrodes for clicks, 1000, 4000 and 8000 Hz tone bursts at 30, 50, and 70 dB nHL. Compared with control subjects, tinnitus subjects did not show reduced ABR wave I amplitude or slope in either the entire group of 21 tinnitus subjects or a subset of tinnitus subjects with normal audiograms. Despite the small sample size and diverse tinnitus population, the present result suggests that low signal-to-noise ratios in non-invasive measurement of the ABR limit its clinical utility in diagnosing tinnitus in humans.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available