4.6 Article

Exploration of the Structure-Function Relationships of a Novel Frog Skin Secretion-Derived Bioactive Peptide, t-DPH1, through Use of Rational Design, Cationicity Enhancement and In Vitro Studies

Journal

ANTIBIOTICS-BASEL
Volume 10, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/antibiotics10121529

Keywords

antimicrobial peptides; frog skin secretion; dermaseptin; peptide modification

Ask authors/readers for more resources

Amphibian skin-derived antimicrobial peptides are gaining increasing attention for their low drug resistance and potential for further bioactivity optimization. This study isolated a novel dermaseptin peptide with antimicrobial and antiproliferative activities, and designed cationicity-enhanced analogues to explore activity enhancement thresholds. The research suggests that improving net charge can enhance bioactivities up to a certain limit, beyond which bioactivities decrease or remain constant.
Amphibian skin-derived antimicrobial peptides (AMPs) have attracted increasing attention from scientists because of their excellent bioactivity and low drug resistance. In addition to being the alternative choice of antibiotics or anticancer agents, natural AMPs can also be modified as templates to optimise their bioactivities further. Here, a novel dermaseptin peptide, t-DPH1, with extensive antimicrobial activity and antiproliferative activity, was isolated from the skin secretion of Phyllomedusa hypochondrialis through 'shotgun' cloning. A series of cationicity-enhanced analogues of t-DPH1 were designed to further improve its bioactivities and explore the charge threshold of enhancing the bioactivity of t-DPH1. The present data suggest that improving the net charge can enhance the bioactivities to some extent. However, when the charge exceeds a specific limit, the bioactivities decrease or remain the same. When the net charge achieves the limit, improving the hydrophobicity makes no sense to enhance bioactivity. For t-DPH1, the upper limit of the net charge was +7. All the designed cationicity-enhanced analogues produced no drug resistance in the Gram-negative bacterium, Escherichia coli. These findings provide creative insights into the role of natural drug discovery in providing templates for structural modification for activity enhancement.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available