4.7 Article

Microwave-Assisted Hydrodistillation of Hop (Humulus lupulus L.) Terpenes: A Pilot-Scale Study

Journal

FOODS
Volume 10, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/foods10112726

Keywords

green extraction; hops (Humulus lupulus L.); microwave-assisted hydrodistillation; terpenes; pilot-scale extraction

Funding

  1. Piedmont Region (Nutribev project) [POR-FESR 2014/2020]

Ask authors/readers for more resources

This study aimed to design an optimized extraction protocol using microwaves for the volatile fraction (VF) from hops, and investigate the impact of different hop forms on the extraction efficiency. The results showed that extraction in a pilot reactor could achieve higher yields and save more energy.
Interest in essential oils has consistently increased in recent years. Essential oils have a large variety of applications in multiple fields, including in the food, cosmetics and pharmaceutical industries. The volatile fraction (VF) in hops (Humulus lupulus L.) fits within this domain as it is primarily used in the brewery industry for the aromatization of beer, and is responsible for the floral and fruity tones. This work aims to design an optimized extraction protocol of the VF from hops, using microwaves. Microwave-assisted hydrodistillation (MAHD) has been developed to reduce energy and time consumption in lab-scale reactors up to industrial-scale systems. Hops are principally available in three forms, according to a brewery's applications: (i) fresh (FH); (ii) dried (DH) and (iii) pelletized (PH). In this work, all three forms have therefore been studied and the recovered volatiles characterized by means of GC-MS. The optimized lab-scale MAHD protocol gave the best extraction yield of 20.5 mL(VF)/kg(dry matrix) for FH. This value underwent a slight contraction when working at the highest matrix amount (3 kg), with 17.3 mL(VF)/kg(dry matrix) being achieved. Further tests were then performed in a pilot reactor that is able to process 30 kg of material. In this case, high yield increases were observed for PH and DH; quadruple and double the lab-scale yields, respectively. In addition, this industrial-scale system also provided marked energy savings, practically halving the absorbed kJ/mL(VF).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available