4.6 Article

Screening of Antimicrobial Activities and Lipopeptide Production of Endophytic Bacteria Isolated from Vetiver Roots

Journal

MICROORGANISMS
Volume 10, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/microorganisms10020209

Keywords

bacterial endophytes; lipopeptides; antifungal activities; high-throughput screening; Bacillus subtilis; Fusarium sp

Categories

Funding

  1. Impact Biomolecules project (Lorraine Universite d'Excellence) [ANR-15-IDEX-04-LUE]
  2. Bio4Solutions Chaire
  3. ALIBIOTECH program

Ask authors/readers for more resources

The study found that endophytic bacteria affiliated with Bacillus, Janthinobacterium, Yokenella, Enterobacter, Pseudomonas, Serratia, and Microbacterium have antifungal and antibacterial activities, and can produce lipopeptides which have potential pharmaceutical and agricultural value.
The exploration of certain microbial resources such as beneficial endophytic microorganisms is considered a promising strategy for the discovery of new antimicrobial compounds for the pharmaceutical industries and agriculture. Thirty-one endophytic bacterial strains affiliated with Bacillus, Janthinobacterium, Yokenella, Enterobacter, Pseudomonas, Serratia, and Microbacterium were previously isolated from vetiver (Chrysopogon zizanioides (L.) Roberty) roots. These endophytes showed antifungal activity against Fusarium graminearum and could be a source of antimicrobial metabolites. In this study, in particular, using high-throughput screening, we analyzed their antagonistic activities and those of their cell-free culture supernatants against three species of Fusarium plant pathogens, a bacterial strain of Escherichia coli, and a yeast strain of Saccharomyces cerevisiae, as well as their capacity to produce lipopeptides. The results showed that the culture supernatants of four strains close to B. subtilis species exhibited antimicrobial activities against Fusarium species and E. coli. Using mass spectrometry analyses, we identified two groups of lipopeptides (surfactins and plipastatins) in their culture supernatants. Whole-genome sequencing confirmed that these bacteria possess NRPS gene clusters for surfactin and plipastatin. In vitro tests confirmed the inhibitory effect of plipastatin alone or in combination with surfactin against the three Fusarium species.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available