4.6 Article

Proteomic Analysis Explores Interactions between Lactiplantibacillus plantarum and Saccharomyces cerevisiae during Sourdough Fermentation

Journal

MICROORGANISMS
Volume 9, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/microorganisms9112353

Keywords

sourdough; Lactiplantibacillus plantarum; Saccharomyces cerevisiae; proteomics; carbohydrate metabolism; amino acid metabolism

Categories

Funding

  1. National Natural Science Foundation of China [31601461]

Ask authors/readers for more resources

The study focused on the protein changes in sourdough fermented with single culture or mixed culture, showing that carbohydrate metabolism is crucial for sourdough quality. Greater abundance of certain enzymes contributing to sourdough quality was observed in mixed-culture-based sourdough. However, some compounds important for enhancing nutritional characteristics and flavor of sourdough decreased in abundance in the mixed-culture-based sourdough, which might affect the taste and texture of the sourdough.
Sourdough is a fermentation culture which is formed following metabolic activities of a multiple bacterial and fungal species on raw dough. However, little is known about the mechanism of interaction among different species involved in fermentation. In this study, Lactiplantibacillus plantarum Sx3 and Saccharomyces cerevisiae Sq7 were selected. Protein changes in sourdough, fermented with single culture (either Sx3 or Sq7) and mixed culture (both Sx3 and Sq7), were evaluated by proteomics. The results show that carbohydrate metabolism in mixed-culture-based sourdough is the most important metabolic pathway. A greater abundance of L-lactate dehydrogenase and UDP-glucose 4-epimerase that contribute to the quality of sourdough were observed in mixed-culture-based sourdough than those produced by a single culture. Calreticulin, enolase, seryl-tRNA synthetase, ribosomal protein L23, ribosomal protein L16, and ribosomal protein L5 that are needed for the stability of proteins were increased in mixed-culture-based sourdough. The abundance of some compounds which play an important role in enhancing the nutritional characteristics and flavour of sourdough (citrate synthase, aldehyde dehydrogenase, pyruvate decarboxylase, pyruvate dehydrogenase E1 and acetyl-CoA) was decreased. In summary, this approach provided new insights into the interaction between L. plantarum and S. cerevisiae in sourdough, which may serve as a base for further research into the detailed mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available