4.6 Article

Antimicrobial Activity of Chemically and Biologically Treated Chitosan Prepared from Black Soldier Fly (Hermetia illucens) Pupal Shell Waste

Journal

MICROORGANISMS
Volume 9, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/microorganisms9122417

Keywords

insects; Hermetia illucens; pupal exuviae; chitin; chitosan; antimicrobial activity keyword

Categories

Ask authors/readers for more resources

This study conducted a comparative analysis of chemical and biological extraction of chitin and chitosan from black soldier fly pupal exuviae for the first time, revealing the promising antimicrobial properties of chitosan derived from black soldier fly pupal exuviae against various strains of bacteria.
Globally, the broad-spectrum antimicrobial activity of chitin and chitosan has been widely documented. However, very little research attention has focused on chitin and chitosan extracted from black soldier fly pupal exuviae, which are abundantly present as byproducts from insect-farming enterprises. This study presents the first comparative analysis of chemical and biological extraction of chitin and chitosan from BSF pupal exuviae. The antibacterial activity of chitosan was also evaluated. For chemical extraction, demineralization and deproteinization were carried out using 1 M hydrochloric acid at 100 degrees C for 2 h and 1 M NaOH for 4 h at 100 degrees C, respectively. Biological chitin extraction was carried out by protease-producing bacteria and lactic-acid-producing bacteria for protein and mineral removal, respectively. The extracted chitin was converted to chitosan via deacetylation using 40% NaOH for 8 h at 100 degrees C. Chitin characterization was done using FTIR spectroscopy, while the antimicrobial properties were determined using the disc diffusion method. Chemical and biological extraction gave a chitin yield of 10.18% and 11.85%, respectively. A maximum chitosan yield of 6.58% was achieved via chemical treatment. From the FTIR results, biological and chemical chitin showed characteristic chitin peaks at 1650 and 1550 cm(-1)-wavenumbers corresponding to amide I stretching and amide II bending, respectively. There was significant growth inhibition for Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans when subjected to 2.5 and 5% concentrations of chitosan. Our findings demonstrate that chitosan from BSF pupal exuviae could be a promising and novel therapeutic agent for drug development against resistant strains of bacteria.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available