4.7 Article

The Expression and Activity of Rhodanese, 3-Mercaptopyruvate Sulfurtransferase, Cystathionine γ-Lyase in the Most Frequently Chosen Cellular Research Models

Journal

BIOMOLECULES
Volume 11, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/biom11121859

Keywords

cysteine; glutathione; polymorphism; sulfane sulfur; sulfurtransferases

Funding

  1. Polish National Science Centre [UMO-2017/01/X/NZ3/00346]
  2. Polish Ministry of Science and Higher Education [K/ZDS/007981]
  3. Jagiellonian University Medical College

Ask authors/readers for more resources

This paper provides information on the activity and expression levels of three sulfurtransferases in various cell lines and their correlation with cellular antioxidant capacity. By analyzing the genetic variation of sulfurtransferases, the study reveals a large number of polymorphisms. Despite challenges, understanding sulfurtransferases could enhance disease comprehension and potentially lead to new treatment approaches.
This paper provides information concerning the activity and expression levels of three sulfurtransferases (STRs): rhodanese (TST, EC: 2.8.1.1), 3-mercaptopyruvate sulfurtransferase (MPST, EC: 2.8.1.2) and cystathionine gamma-lyase (CTH, EC: 4.4.1.1) in various cell lines. Since very limited data are available in the scientific literature on this subject, the available data are included in this paper. These shortages often force the researchers to carry out their own screening tests that allow them to choose an appropriate model for their further studies. This work supplements the existing deficiencies in this area and presents the activity and expression of STRs in the eight most frequently chosen cell lines: the mouse mammary gland cell line (NMuNG, ATCC: CRL-1636), mouse mammary gland tumor (4T1, ATCC: CRL-2539), mouse fibroblast (MEF, ATCC: SCRC-1008), mouse melanoma (B16-F1, ATCC: CRL-6323), human colorectal adenocarcinoma (Caco-2, ATCC: HTB-37), human embryonic kidney (HEK-293, ATCC: CRL-1573), human osteosarcoma (MG-63, ATCC: CRL-1427) and rat myocardium (H9c2, ATCC: CRL-1446). Changes in STRs activity are directly related to the bioavailability of cysteine and the sulfane sulfur level, and thus the present authors also measured these parameters, as well as the level of glutathione (its reduced (GSH) and oxidized (GSSG) form) and the [GSH]/[GSSG] ratio that determines the antioxidant capacity of the cells. STRs demonstrate diverse functionality and clinical relevance; therefore, we also performed an analysis of genetic variation of STRs genes that revealed a large number of polymorphisms. Although STRs still provide challenges in several fields, responding to them could not only improve the understanding of various diseases, but may also provide a way to treat them.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available