4.7 Article

Genetic Algorithm-Based Trajectory Optimization for Digital Twin Robots

Journal

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fbioe.2021.793782

Keywords

genetic algorithm; mobile robot; digital twin; virtual model; trajectory optimization

Funding

  1. National Natural Science Foundation of China [52075530, 51575407, 51505349, 51975324, 61733011, 41906177]
  2. Hubei Provincial Department of Education [D20191105]
  3. National Defense PreResearch Foundation of Wuhan University of Science and Technology [GF201705]
  4. Open Fund of the Key Laboratory for Metallurgical Equipment and Control of Ministry of Education in Wuhan University of Science and Technology [2018B07, 2019B13]
  5. Open Fund of Hubei Key Laboratory of Hydroelectric Machinery Design and Maintenance in Three Gorges University [2020KJX02, 2021KJX13]

Ask authors/readers for more resources

This paper presents a method for optimizing the trajectory of mobile robots by reducing the error in the movement trajectory through the interaction of virtual and real data.
Mobile robots have an important role in material handling in manufacturing and can be used for a variety of automated tasks. The accuracy of the robot's moving trajectory has become a key issue affecting its work efficiency. This paper presents a method for optimizing the trajectory of the mobile robot based on the digital twin of the robot. The digital twin of the mobile robot is created by Unity, and the trajectory of the mobile robot is trained in the virtual environment and applied to the physical space. The simulation training in the virtual environment provides schemes for the actual movement of the robot. Based on the actual movement data returned by the physical robot, the preset trajectory of the virtual robot is dynamically adjusted, which in turn enables the correction of the movement trajectory of the physical robot. The contribution of this work is the use of genetic algorithms for path planning of robots, which enables trajectory optimization of mobile robots by reducing the error in the movement trajectory of physical robots through the interaction of virtual and real data. It provides a method to map learning in the virtual domain to the physical robot.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available