4.4 Article

Efficient cell transplantation combining injectable hydrogels with control release of growth factors

Journal

REGENERATIVE THERAPY
Volume 18, Issue -, Pages 372-383

Publisher

ELSEVIER
DOI: 10.1016/j.reth.2021.09.003

Keywords

Stem cell transplantation; Injectable hydrogel; Drug delivery system; Adipose-derived stem cells

Funding

  1. Cooperative Research Program (Joint Usage/Research Center program) of Institute for Frontier Life and Medical Sciences, Kyoto University
  2. JSPS KAKENHI [JP19K24089]

Ask authors/readers for more resources

Combining GM/GF mixture with iGel can enhance the survival of ASCs and improve the therapeutic efficacy in cell transplantation.
Introduction: The objective of this study is to investigate the effect of gelatin microspheres incorporating growth factors on the therapeutic efficacy in cell transplantation. The strength of this study is to combine gelatin hydrogel microspheres incorporating basic fibroblast growth factor and platelet growth factor mixture (GM/GF) with bioabsorbable injectable hydrogels (iGel) for transplantation of adipose-derived stem cells (ASCs). Methods: The rats ASCs suspended in various solutions were transplanted in masseter muscle. Rats were euthanized 2, 7, 14 days after injection for measurement of the number of ASCs retention in the muscle and morphological evaluation of muscle fibers and the inflammation of the injected tissue by histologic and immunofluorescent stain. Results: Following the injection into the skeletal muscle, the GM/GF allowed the growth factors to release at the injection site over one week. When ASCs were transplanted into skeletal muscle using iGel incorporating GM/GF (iGel+GM/GF), the number of cells grafted was significantly high compared with other control groups. Moreover, for the groups to which GM/GF was added, the cells transplanted survived, and the Myo-D expression of a myoblast marker was observed at the region of cells transplanted. Conclusions: The growth factors released for a long time likely enhance the proliferative and differentiative capacity of cells. The simple combination with iGel and GM/GF allowed ASCs to enhance their survival at the injected site and consequently achieve improved therapeutic efficacy in cell transplantation. (C) 2021, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available