4.7 Article

Effect of Water Stress on Grain Yield and Physiological Characters of Quinoa Genotypes

Journal

AGRONOMY-BASEL
Volume 11, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/agronomy11101934

Keywords

drought tolerant; quinoa; K+ accumulation; proline; grain yield; GGE biplot

Funding

  1. Natural Science Basic Research Program of Shaanxi Province [2018JQ5218]
  2. National Natural Science Foundation of China [51809224]
  3. Top Young Talents of Shaanxi Special Support Program

Ask authors/readers for more resources

The study aimed to evaluate the yield and physiological characteristics of drought-tolerant quinoa genotypes under water deficit conditions, identifying genotypes that showed maximum grain yield and improved physiological traits under severe water stress, assessed based on the Drought Tolerance Index (DTI).
Climate change scenarios predict that an extended period of drought is a real threat to food security, emphasizing the need for new crops that tolerate these conditions. Quinoa is the best option because it has the potential to grow under water deficit conditions. There is considerable variation in drought tolerance in quinoa genotypes, and the selection of drought-tolerant quinoa germplasms is of great interest. The main goal of this work is to evaluate the crop yield and characterize the physiology of 20 quinoa genotypes grown under water deficit in a wirehouse. The experiment was a complete randomized design (CRD) factorial with three replications. Seedling growth, i.e., fresh weight (FW), dry weight (DW), root length (RL), shoot length (SL), relative growth rate of root length (RGR-RL), shoot length (RGR-SL), and physiological performance, i.e., chlorophyll content (a and b), carotenoid, leaf phenolic content, leaf proline content, membrane stability index (MSI), and leaf K+ accumulation were evaluated in a hydroponic culture under different water-deficit levels developed by PEG 6000 doses (w/v) of 0% (control), 0.3%, and 0.6%. Yield attributes were evaluated in a pot at three different soil moisture levels, as determined by soil gravimetric water holding capacity (WHC) of 100 (control), 50% WHC (50 % drought stress) and 25% WHC (75% stress). In both experiments, under the water stress condition, the growth (hydroponic study) and yield traits (pot study) were significantly reduced compared to control treatments. On the drought tolerance index (DTI) based on seed yield, genotype 16 followed by 10, 1, 4, 5, 7, and 12 could be considered drought-tolerant genotypes that produced maximum grain yield and improved physiological characteristics under severe water stress conditions in hydroponic culture. In both studies, genotypes 3, 8, 13, and 20 performed poorly and were considered drought-sensitive genotypes with the lowest DTI values under water-stressed conditions. All the studied agronomic traits (grain yield, root and shoot length, shoot fresh and dry weights) and physiological traits (leaf phenolic, proline content, carotenoid, K+ accumulation, membrane stability index, and relative water content) were firmly inter-correlated and strongly correlated with DTI. They can be regarded as screening criteria, employing a large set of quinoa genotypes in a breeding program.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available