4.7 Article

Modelling the Relative Abundance of Roe Deer (Capreolus capreolus L.) along a Climate and Land-Use Gradient

Journal

ANIMALS
Volume 12, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/ani12030222

Keywords

density surface model; distance sampling; roe deer; GAM; climate change; land-use; spatial modelling; extrapolation; dung pellets

Funding

  1. Bavarian Ministry of Science and the Arts as part of the LandKlif project of the Bavarian Climate Research Network (bayklif)

Ask authors/readers for more resources

The study reveals that the number of European roe deer is influenced by climate, habitat type, and wildlife management methods, with seasonal variations. Contrary to the belief that roe deer are woodland species, they prefer agriculture-dominated landscapes and areas with moderate temperatures. These findings are important for managing the species and predicting the impacts of climate and land-use changes.
Simple Summary The European roe deer is the most abundant ungulate in Europe. Information on the number of animals and the factors that influence this are essential for the effective management of this species. We developed a model to estimate the pellet group density using transect surveys of dung pellets in the federal state of Bavaria, south-eastern Germany. We used the pellet group density as a proxy for roe deer relative abundance. Our results show that climate, habitat type and wildlife management approach determine the relative number of roe deer. Influential factors differed between seasons and were expected due to changes in food and shelter availability. Although recognized as a woodland species, the majority of roe deer are expected in agriculture-dominated landscapes, which shows their ability to adapt to a wide range of landscape types, especially those with high food availability. Higher numbers were also predicted in regions with intermediate temperatures. Estimates of relative number do not give the actual absolute number of animals but are useful in determining which conditions will have more or fewer animals and can provide information for broad-scale management recommendations. Our results also provide insights into possible future changes in the distribution of relative numbers of roe deer due to climate and land-use change. European roe deer (Capreolus capreolus L.) are important given their economic, recreational and ecological value. However, uncontrolled roe deer numbers can result in negative impacts on forest regeneration and agricultural crops, disease transmission and occurrences of deer-vehicle collisions. Information on the abundance and distribution is needed for effective management. We combined distance sampling (DS) of roe deer dung pellet groups with multiple variables to develop a density surface model (DSM) in the federal state of Bavaria in south-eastern Germany. We used the estimates of pellet group density as a proxy for roe deer relative abundance. We extrapolated our best DSM, conducted a quantitative evaluation and contrasted relative abundance along climate and land-use gradients. Relative abundance of roe deer was influenced by a combination of habitat type, climate and wildlife management variables, which differed between seasons and which reflected changes in food and shelter availability. At the landscape scale, the highest abundance was observed in agriculture-dominated areas and the lowest in urban areas. Higher abundance was also observed in areas with intermediate temperatures compared to the warmest areas. Our results provide information on possible future changes in the distribution of relative abundance due to changes in climate and land-use.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available