4.6 Article

Artificial Neural Network Assisted Variable Step Size Incremental Conductance MPPT Method with Adaptive Scaling Factor

Journal

ELECTRONICS
Volume 11, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/electronics11010043

Keywords

neural network; variable step size; maximum power point tracking; incremental conductance method

Ask authors/readers for more resources

A neural network assisted variable step size incremental conductance MPPT method is proposed in this paper for photovoltaic systems. By adopting a proper scaling factor, the performance of this method can be improved under rapidly changing irradiance conditions.
In conventional adaptive variable step size (VSS) maximum power point tracking (MPPT) algorithms, a scaling factor is utilized to determine the required perturbation step. However, the performance of the adaptive VSS MPPT algorithm is essentially decided by the choice of scaling factor. In this paper, a neural network assisted variable step size (VSS) incremental conductance (IncCond) MPPT method is proposed. The proposed method utilizes a neural network to obtain an optimal scaling factor that should be used in current irradiance level for the VSS IncCond MPPT method. Only two operating points on the characteristic curve are needed to acquire the optimal scaling factor. Hence, expensive irradiance and temperature sensors are not required. By adopting a proper scaling factor, the performance of the conventional VSS IncCond method can be improved, especially under rapid varying irradiance conditions. To validate the studied algorithm, a 400 W prototyping circuit is built and experiments are carried out accordingly. Comparing with perturb and observe (P&O), alpha-P&O, golden section and conventional VSS IncCond MPPT methods, the proposed method can improve the tracking loss by 95.58%, 42.51%, 93.66%, and 66.14% under EN50530 testing condition, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available