4.6 Article

Celastrol with a Knockdown of miR-9-2, miR-17 and miR-19 Causes Cell Cycle Changes and Induces Apoptosis and Autophagy in Glioblastoma Multiforme Cells

Journal

PROCESSES
Volume 10, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/pr10030441

Keywords

glioblastoma multiforme; celastrol; siRNA; miRNAs; cell cycle regulation; apoptosis; autophagy

Funding

  1. Medical University of Silesia [KNW-1-088/N/8/O]

Ask authors/readers for more resources

This study investigated the efficacy of celastrol and knockdown of miR-9-2, miR-17, and miR-19 genes in human glioblastoma cells. The combination treatment resulted in reduced cell viability and proliferation, altered cell cycle distribution, and induced apoptosis and autophagy. The mechanism of action appeared to differ for each miRNA knockdown. Silencing the overexpressed miR genes could be an important strategy for developing more effective treatments for glioblastoma.
Glioblastoma multiforme (GBM) is a cancer with extremely high aggressiveness, malignancy and mortality. Because of all of the poor prognosis features of GBM, new methods should be sought that will effectively cure it. We examined the efficacy of a combination of celastrol and a knockdown of the miR-9-2, miR-17 and miR-19 genes in the human glioblastoma U251MG cell line. U251MG cells were transfected with specific siRNA and exposed to celastrol. The effect of the knockdown of the miRs genes in combination with exposure to celastrol on the cell cycle (flow cytometry) and the expression of selected genes related to its regulation (RT-qPCR) and the regulation of apoptosis and autophagy was investigated. We found a significant reduction in cell viability and proliferation, an accumulation of the subG1-phase cells and a decreased population of cells in the S and G2/M phases, as well as the induction of apoptosis and autophagy. The observed changes were not identical in the case of the silencing of each of the tested miRNAs, which indicates a different mechanism of action of miR9-2, miR-17, miR-19 silencing on GBM cells in combination with celastrol. The multidirectional effects of the silencing of the genes encoding miR-9-2, miR-17 and miR-19 in combination with exposure to celastrol is possible. The studied strategy of silencing the miR overexpressed in GBM could be important in developing more effective treatments for glioblastoma. Additional studies are necessary in order to obtain a more detailed interpretation of the obtained results. The siRNA-induced miR-9-2, miR-17 and miR-19 mRNA knockdowns in combination with celastrol could offer a novel therapeutic strategy to more effectively control the growth of human GBM cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available