4.6 Article

Recapitulation of First Pass Metabolism Using 3D Printed Microfluidic Chip and Organoid

Journal

CELLS
Volume 10, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/cells10123301

Keywords

first pass metabolism; 3D print; microfluidic; chip

Categories

Funding

  1. National Research Foundation of Korea (NRF) - Korean government (MSIT) [2018R1C1B5042032, 2019R1C1C1004017, 2020R1C1C1005380]
  2. Ministry of Trade, Industry & Energy (MOTIE, Korea) [20009773]
  3. National Research Foundation of Korea [2018R1C1B5042032, 2020R1C1C1005380, 2019R1C1C1004017] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

This study aimed to produce a microfluidic chip to recapitulate and assess the feasibility of first pass metabolism. The optimized chip design was able to visualize and maintain organoids or spheroids, demonstrating a potential application in drug development.
The low bioavailability of oral drugs due to first pass metabolism is a major obstacle in drug development. With significant developments in the field of in vitro organ modeling and microfluidic chip three-dimensional (3D) printing, the challenge is to apply these for the production and evaluation of new drug candidates. This study aimed to produce a microfluidic chip to recapitulate and assess the feasibility of the first pass metabolism. The infill condition of the polycarbonate transparent filament and layer height was optimized to visualize and maintain the organoid or spheroid on the chip. Next, the chip was fabricated using a 3D printer after a computer-aided design (CAD). The chip consisted of three wells of different heights. The small intestinal (SI) organoid and colorectal adenocarcinoma spheroids were placed on the second and third wells, respectively. No additional equipment was assembled, and the tilted tunnel was connected to each well to transport the material by gradient force. The chip was fabricated using 50% and 0.1 um thickness. Among the three different prototypes of chip (chips 1, 2, and 3), the highest distribution of plasmids in the Matrigel of the second well was observed in Chip 2 at 48 h. The effect of first pass metabolism was analyzed using docetaxel. In the chip without an SI organoid, there was a marked decrease in the viability of colorectal adenocarcinoma spheroids due to drug efficacy. However, in the chip with the SI organoid, no significant change in viability was observed because of first pass metabolism. In conclusion, we presented a simple, fast, and low-cost microfluidic chip to analyze the efficacy change of candidate drug by the first pass metabolism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available