4.6 Article

TH588 and Low-Dose Nocodazole Impair Chromosome Congression by Suppressing Microtubule Turnover within the Mitotic Spindle

Journal

CANCERS
Volume 13, Issue 23, Pages -

Publisher

MDPI
DOI: 10.3390/cancers13235995

Keywords

microtubule dynamics; microtubule-targeting agents; cancer therapy; mitotic spindle; cell division

Categories

Ask authors/readers for more resources

TH588 has been identified as a promising anti-cancer compound that stabilizes microtubules in mitotic cells, leading to mitotic arrest or cell death. Its anticancer properties largely depend on its ability to target microtubules.
Simple Summary A promising anti-cancer compound TH588 has been recently identified as a microtubule-targeting agent that inhibits tubulin polymerization in vitro and interferes with microtubule dynamics in interphase cells. Although it was shown to arrest cells in mitosis, its effect on microtubule dynamics in dividing cells remained unknown. By analyzing microtubule dynamics in living cells treated with either TH588 or low-dose nocodazole, we revealed that both of these drugs stabilize microtubules within the mitotic spindle, leading to premature formation of kinetochore-microtubule end-on attachments on uncongressed chromosomes. This causes mitotic arrest, ultimately resulting in cell death or cell division with uncongressed chromosomes. Both of these cell fates could contribute to the selective effect associated with the activity of TH588 in cancer cells. Microtubule-targeting agents (MTAs) have been used for decades to treat different hematologic and solid cancers. The mode of action of these drugs mainly relies on their ability to bind tubulin subunits and/or microtubules and interfere with microtubule dynamics. In addition to its MTH1-inhibiting activity, TH588 has been recently identified as an MTA, whose anticancer properties were shown to largely depend on its microtubule-targeting ability. Although TH588 inhibited tubulin polymerization in vitro and reduced microtubule plus-end mobility in interphase cells, its effect on microtubule dynamics within the mitotic spindle of dividing cells remained unknown. Here, we performed an in-depth analysis of the impact of TH588 on spindle-associated microtubules and compared it to the effect of low-dose nocodazole. We show that both treatments reduce microtubule turnover within the mitotic spindle. This microtubule-stabilizing effect leads to premature formation of kinetochore-microtubule end-on attachments on uncongressed chromosomes, which consequently cannot be transported to the cell equator, thereby delaying cell division and leading to cell death or division with uncongressed chromosomes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available