4.6 Article

Novel Repositioning Therapy for Drug-Resistant Glioblastoma: In Vivo Validation Study of Clindamycin Treatment Targeting the mTOR Pathway and Combination Therapy with Temozolomide

Journal

CANCERS
Volume 14, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/cancers14030770

Keywords

glioblastoma; signal transduction; xenograft model; drug repositioning

Categories

Funding

  1. KAKENHI grants from the Japanese Society for the Promotion of Science [17K08304, 20K07194, 17K16632, 19K09476, 17K17739, 20K17955]
  2. Grants-in-Aid for Scientific Research [17K16632, 17K08304, 19K09476, 20K17955, 20K07194, 17K17739] Funding Source: KAKEN

Ask authors/readers for more resources

This study found that clindamycin has cytotoxic effects on glioblastoma cells and its mechanism of action involves the inhibition of the mTOR pathway and the suppression of MGMT protein expression. The combination of clindamycin and temozolomide shows promising synergistic antitumor activity.
Simple Summary Given the significant costs and lengthy timelines of drug development and clinical trials, drug repositioning is a promising alternative to find effective treatments for brain tumors quickly and inexpensively. In the present study, using a simple drug screen of macrolides, we found that clindamycin (CLD) had cytotoxic effects on glioblastoma (GBM) cells. Further studies showed the inhibition of the mammalian target of rapamycin (mTOR) pathway as the key mechanism of action. Interestingly, we found that co-treatment with temozolomide (TMZ), the alkylating agent considered as standard therapy in GBM, enhanced these effects and proposed the inhibition of O6-methylguanine-DNA methyltransferase (MGMT) protein by CLD as a potential mechanism for this combination effect. Multimodal therapy including surgery, radiation treatment, and temozolomide (TMZ) is performed on glioblastoma (GBM). However, the prognosis is still poor and there is an urgent need to develop effective treatments to improve survival. Molecular biological analysis was conducted to examine the signal activation patterns in GBM specimens and remains an open problem. Advanced macrolides, such as azithromycin, reduce the phosphorylation of p70 ribosomal protein S6 kinase (p70S6K), a downstream mammalian target of rapamycin (mTOR) effector, and suppress the proliferation of T-cells. We focused on its unique profile and screened for the antitumor activity of approved macrolide antibiotics. Clindamycin (CLD) reduced the viability of GBM cells in vitro. We assessed the effects of the candidate macrolide on the mTOR pathway through Western blotting. CLD attenuated p70S6K phosphorylation in a dose-dependent manner. These effects on GBM cells were enhanced by co-treatment with TMZ. Furthermore, CLD inhibited the expression of the O6-methylguanine-DNA methyltransferase (MGMT) protein in cultured cells. In the mouse xenograft model, CLD and TMZ co-administration significantly suppressed the tumor growth and markedly decreased the number of Ki-67 (clone MIB-1)-positive cells within the tumor. These results suggest that CLD suppressed GBM cell growth by inhibiting mTOR signaling. Moreover, CLD and TMZ showed promising synergistic antitumor activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available