4.6 Article

Dosimetric Comparisons between Proton Beam Therapy and Modern Photon Radiation Techniques for Stage I Non-Small Cell Lung Cancer According to Tumor Location

Journal

CANCERS
Volume 13, Issue 24, Pages -

Publisher

MDPI
DOI: 10.3390/cancers13246356

Keywords

proton beam therapy; non-small cell lung cancer; mean lung dose; mean heart dose; dosimetric comparison

Categories

Funding

  1. National Cancer Center Grant [NCC 2110590, 1910140]

Ask authors/readers for more resources

This study investigated the dosimetric benefits of proton beam therapy (PBT) compared to modern photon radiation techniques for stage I non-small cell lung cancer (NSCLC) patients, based on tumor location (central, peripheral, and close to the chest wall). The results showed that PBT significantly reduced radiation exposure to the lung and heart in all locations, indicating its potential benefits for reducing toxicities in these organs.
Simple Summary Stereotactic ablative radiotherapy (SABR) is a well-established technique used to treat stage I non-small cell lung cancer (NSCLC). Proton beam therapy (PBT) offers dosimetric advantages over photon SABR techniques by reducing doses to normal organs. Hence, it is believed that PBT is helpful for patients with tumors located centrally in stage I NSCLC. However, the benefits of PBT for other locations, such as peripherally located tumors, have not been well-described. We investigated dosimetric benefits for PBT over modern photon radiation techniques for stage I NSCLC according to tumor locations. A total of 42 patients' (including tumors that were central (11), peripheral (nine), and close to the chest wall (22)) PBT plans were compared with those of modern photon radiation techniques. In all locations, PBT significantly reduced radiation exposure to the lung and heart. To reduce potential lung and heart toxicities, PBT is ideal, even in the peripherally located stage I NSCLC. Herein, we investigated the dosimetric benefits for proton beam therapy (PBT) over modern photon radiation techniques according to tumor location (central, peripheral, and close to the chest wall) for stage I non-small cell lung cancer (NSCLC) patients. A total of 42 patients with stage I NSCLC were treated with PBT with a total dose of 50-70 Gy in four or 10 fractions considering the risk of treatment-related toxicities. Simulation plans for three-dimensional conformal radiation therapy (3D-CRT), static-field intensity-modulated radiotherapy (IMRT), and volumetric-modulated arc therapy (VMAT) were retrospectively generated using the same treatment volumes as implemented in the PBT plans for these patients. Dosimetric improvements were observed with PBT as compared with all the photon-based radiation techniques with regards to the mean lung dose, lung V5 and V10, mean heart dose, and heart V5 and V10 in all locations. Moreover, lower radiation exposure to the chest wall was observed within PBT for peripherally located and close to the chest wall tumors. All radiotherapy modalities achieved clinically satisfactory treatment plans in the current study. Notably, the usage of PBT resulted in significant dosimetric improvements in the lung and heart over photon-based techniques at all tumor locations, including the periphery, for stage I NSCLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available