4.6 Article

Antagonistic Roles of the Tumor Suppressor miR-210-3p and Oncomucin MUC4 Forming a Negative Feedback Loop in Pancreatic Adenocarcinoma

Journal

CANCERS
Volume 13, Issue 24, Pages -

Publisher

MDPI
DOI: 10.3390/cancers13246197

Keywords

pancreatic cancer; MUC4; miR-210-3p; anti-tumoral miR

Categories

Funding

  1. Institut National de la Sante et de la Recherche Medicale (Inserm)
  2. Centre National de la Recherche Scientifique (CNRS)
  3. Universite de Lille
  4. la Ligue Nationale contre le Cancer
  5. Region Nord Pas de Calais Contrat de Plan Etat Region CPER Cancer
  6. University of Lille
  7. CPER Cancer

Ask authors/readers for more resources

This study identified a MUC4-miR-210-3p negative feedback loop in early-onset PDAC and revealed new functions of miR-210-3p in proliferation and migration of pancreatic cancer cells in vitro and in vivo, indicating a complex balance between MUC4 pro-oncogenic roles and miR-210-3p anti-tumoral effects.
Simple Summary We aimed at characterizing microRNAs activated downstream of MUC4-associated signaling in pancreatic adenocarcinoma. We investigated the MUC4-miR-210-3p reciprocal regulation and deciphered miR-210-3p biological roles in vitro and in vivo. We showed a MUC4-miR-210-3p negative feedback loop that involves NF-kappa B in PDAC-derived cells and the miR-210-3p anti-tumoral functions, suggesting a complex balance between antagonistic pro-oncogenic functions of the oncomucin MUC4 and anti-tumoral roles of the miR-210-3p. Background: Pancreatic adenocarcinoma (PDAC) is a deadly cancer with an extremely poor prognosis. MUC4 membrane-bound mucin is neoexpressed in early pancreatic neoplastic lesions and is associated with PDAC progression and chemoresistance. In cancers, microRNAs (miRNAs, small noncoding RNAs) are crucial regulators of carcinogenesis, chemotherapy response and even metastatic processes. In this study, we aimed at identifying and characterizing miRNAs activated downstream of MUC4-associated signaling in pancreatic adenocarcinoma. MiRnome analysis comparing MUC4-KD versus Mock cancer cells showed that MUC4 inhibition impaired miR-210-3p expression. Therefore, we aimed to better understand the miR-210-3p biological roles. Methods: miR-210-3p expression level was analyzed by RT-qPCR in PDAC-derived cell lines (PANC89 Mock and MUC4-KD, PANC-1 and MiaPACA-2), as well as in mice and patients tissues. The MUC4-miR-210-3p regulation was investigated using luciferase reporter construct and chromatin immunoprecipitation experiments. Stable cell lines expressing miR-210-3p or anti-miR-210-3p were established using CRISPR/Cas9 technology or lentiviral transduction. We evaluated the biological activity of miR-210-3p in vitro by measuring cell proliferation and migration and in vivo using a model of subcutaneous xenograft. Results: miR-210-3p expression is correlated with MUC4 expression in PDAC-derived cells and human samples, and in pancreatic PanIN lesions of Pdx1-Cre; LstopL-KrasG12D mice. MUC4 enhances miR-210-3p expression levels via alteration of the NF-kappa B signaling pathway. Chromatin immunoprecipitation experiments showed p50 NF-kappa B subunit binding on miR-210-3p promoter regions. We established a reciprocal regulation since miR-210-3p repressed MUC4 expression via its 3 '-UTR. MiR-210-3p transient transfection of PANC89, PANC-1 and MiaPACA-2 cells led to a decrease in cell proliferation and migration. These biological effects were validated in cells overexpressing or knocked-down for miR-210-3p. Finally, we showed that miR-210-3p inhibits pancreatic tumor growth and proliferation in vivo. Conclusion: We identified a MUC4-miR-210-3p negative feedback loop in early-onset PDAC, but also revealed new functions of miR-210-3p in both in vitro and in vivo proliferation and migration of pancreatic cancer cells, suggesting a complex balance between MUC4 pro-oncogenic roles and miR-210-3p anti-tumoral effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available